solved my problem
This commit is contained in:
parent
8f41d1b324
commit
be22b65300
|
@ -24,7 +24,6 @@ import torchaudio.transforms as T
|
|||
from ..config import cfg
|
||||
from ..utils import truncate_json
|
||||
|
||||
# need to validate if this is safe to import before modifying the config
|
||||
from .g2p import encode as phonemize
|
||||
from .qnt import encode as quantize, trim, convert_audio
|
||||
|
||||
|
@ -55,8 +54,11 @@ def process(
|
|||
verbose=False,
|
||||
metadata_path=None,
|
||||
|
||||
maximum_duration=0,
|
||||
#use_faiss=True,
|
||||
trim_duration=0,
|
||||
min_duration=0,
|
||||
max_duration=0,
|
||||
|
||||
storage_backend="local"
|
||||
):
|
||||
global tts
|
||||
|
||||
|
@ -75,14 +77,15 @@ def process(
|
|||
similarities = {}
|
||||
sorted_similarities = {}
|
||||
|
||||
mfcc = T.MFCC(sample_rate=cfg.sample_rate)
|
||||
mfcc = None
|
||||
|
||||
"""
|
||||
# too slow
|
||||
if use_faiss:
|
||||
import faiss
|
||||
index = None
|
||||
"""
|
||||
slop = False # should probably have a better name for this, but it governs whether to just sum the entire sequence of embeddings into one embedding to make life easier
|
||||
if storage_backend == "faiss":
|
||||
slop = True
|
||||
elif storage_backend == "chunkdot":
|
||||
slop = True
|
||||
elif storage_backend == "slop":
|
||||
slop = True
|
||||
|
||||
# compute features (embeddings if quantized already, MFCC features if raw audio)
|
||||
for filename in tqdm(os.listdir(f'./{speaker_path}/'), desc=f"Encoding '{speaker_path}'", disable=not verbose):
|
||||
|
@ -94,6 +97,13 @@ def process(
|
|||
raise Exception("!")
|
||||
|
||||
artifact = np.load(f'./{speaker_path}/{filename}.{extension}', allow_pickle=True)[()]
|
||||
duration = artifact["metadata"]["original_length"] / artifact["metadata"]["sample_rate"]
|
||||
|
||||
if 0 < min_duration and duration < min_duration:
|
||||
continue
|
||||
|
||||
if 0 < max_duration and max_duration < duration:
|
||||
continue
|
||||
|
||||
lang = artifact["metadata"]["language"] if "language" in artifact["metadata"]["language"] else "en"
|
||||
if "phonemes" in artifact["metadata"]:
|
||||
|
@ -111,42 +121,116 @@ def process(
|
|||
# treat embeddings as features, if provided quantized audio
|
||||
if extension in artifact_extension:
|
||||
artifact = np.load(f'./{speaker_path}/{filename}.{extension}', allow_pickle=True)[()]
|
||||
duration = artifact["metadata"]["original_length"] / artifact["metadata"]["sample_rate"]
|
||||
|
||||
if 0 < min_duration and duration < min_duration:
|
||||
continue
|
||||
|
||||
if 0 < max_duration and max_duration < duration:
|
||||
continue
|
||||
|
||||
qnt = torch.from_numpy(artifact["codes"].astype(int))[0].t().to(dtype=torch.int16, device=device)
|
||||
if maximum_duration > 0:
|
||||
qnt = trim( qnt, int( cfg.dataset.frames_per_second * maximum_duration ) )
|
||||
|
||||
if trim_duration > 0:
|
||||
qnt = trim( qnt, int( cfg.dataset.frames_per_second * trim_duration ) )
|
||||
|
||||
embedding = tts.audio_embedding( qnt )
|
||||
# try and extract features from the raw audio itself
|
||||
else:
|
||||
# qnt = tts.encode_audio(f'./{speaker_path}/{filename}', trim_length=3.0).to(device)
|
||||
wav, sr = load_audio( f'./{speaker_path}/{filename}.{extension}' )
|
||||
|
||||
duration = wav.shape[-1] / sr
|
||||
|
||||
if 0 < min_duration and duration < min_duration:
|
||||
continue
|
||||
|
||||
if 0 < max_duration and max_duration < duration:
|
||||
continue
|
||||
|
||||
if mfcc is None:
|
||||
mfcc = T.MFCC(sample_rate=cfg.sample_rate)
|
||||
|
||||
embedding = mfcc(wav.to(device))[0].t()
|
||||
|
||||
if slop:
|
||||
embedding = embedding.sum(dim=0)
|
||||
|
||||
features[filename] = embedding
|
||||
|
||||
# rely on FAISS to handle storing embeddings and handling queries
|
||||
# will probably explode in size fast...........
|
||||
if storage_backend == "faiss":
|
||||
import faiss
|
||||
|
||||
index = faiss.IndexFlatL2( embeddings.shape[-1] )
|
||||
embeddings = torch.stack( list( features.values() ) ).cpu()
|
||||
index.add( embeddings )
|
||||
|
||||
"""
|
||||
if use_faiss:
|
||||
if index is None:
|
||||
shape = embedding.shape
|
||||
index = faiss.IndexFlatL2(shape[1])
|
||||
|
||||
index.add(embedding.cpu())
|
||||
|
||||
# to-do: support just querying for list of similar to cram into JSON metadata
|
||||
if verbose:
|
||||
for filename, embedding in features.items():
|
||||
D, I = index.search(embedding.cpu(), k=3)
|
||||
# print(f'{filename}: {I[1:]}')
|
||||
|
||||
if metadata_path is not None:
|
||||
index.save(metadata_path)
|
||||
D, I = index.search(embedding.unsqueeze(0).cpu(), k=2)
|
||||
sim = list(I[0][1:])
|
||||
print(f'{filename}: {sim}')
|
||||
"""
|
||||
|
||||
keys = list(features.keys())
|
||||
key_range = range(len(keys))
|
||||
# queue = [ (index_a, index_b) for index_b in key_range for index_a in key_range if index_a != index_b ]
|
||||
queue = list(combinations(key_range, 2))
|
||||
if metadata_path is not None:
|
||||
faiss.write_index(index, str(metadata_path.with_suffix(".faiss")))
|
||||
|
||||
return
|
||||
|
||||
# compute similarities for every utternace
|
||||
"""
|
||||
# to-do: actually refine this, maybe
|
||||
# desu it's not super easy to install with python3.12, and it is slower than FAISS in testing............
|
||||
if storage_backend == "chunkdot":
|
||||
from chunkdot import cosine_similarity_top_k
|
||||
|
||||
embeddings = torch.stack( list( features.values() ) ).cpu().numpy()
|
||||
similarities = cosine_similarity_top_k(embeddings, top_k=8, show_progress=verbose)
|
||||
|
||||
print(similarities)
|
||||
return
|
||||
"""
|
||||
|
||||
metadata = None
|
||||
if metadata_path is not None:
|
||||
metadata = json.loads(open( metadata_path, "r", encoding="utf-8" ).read()) if metadata_path.exists() else None
|
||||
|
||||
keys = list(features.keys())
|
||||
|
||||
# do batch cosine similarity processing
|
||||
if slop:
|
||||
embeddings = torch.stack( list( features.values() ) )
|
||||
sorted_similarities = {}
|
||||
|
||||
for index, filename in enumerate(keys):
|
||||
embedding = features[filename].unsqueeze(0)
|
||||
similarities = torch.nn.functional.cosine_similarity(embedding, embeddings, dim=1).cpu().tolist()
|
||||
similarities = sorted([ ( keys[i], similarity ) for i, similarity in enumerate( similarities ) if index != i ], key=lambda x: x[1], reverse=True)
|
||||
|
||||
sorted_similarities[filename] = similarities
|
||||
|
||||
most_filename, most_score = similarities[0]
|
||||
least_filename, least_score = similarities[-1]
|
||||
|
||||
if metadata is not None:
|
||||
if filename not in metadata:
|
||||
metadata[filename] = {}
|
||||
metadata[filename]["similar"] = similarities
|
||||
|
||||
if verbose:
|
||||
print( f'{filename}:\n\tMost: {most_filename} ({most_score:.3f})\n\tLeast: {least_filename} ({least_score:.3f})' )
|
||||
|
||||
if metadata is not None:
|
||||
with open(str(metadata_path), "w", encoding="utf-8") as f:
|
||||
f.write( truncate_json( json.dumps( metadata ) ) )
|
||||
|
||||
return sorted_similarities
|
||||
|
||||
# an EXTREMELY naive implementation, fucking disgusting
|
||||
queue = list(combinations(range(len(keys)), 2))
|
||||
for key in tqdm(queue, desc="Computing similarities", disable=not verbose):
|
||||
index_a, index_b = key
|
||||
filename_a, filename_b = keys[index_a], keys[index_b]
|
||||
|
@ -156,8 +240,17 @@ def process(
|
|||
similarities[key] = similarities[swapped_key]
|
||||
continue
|
||||
|
||||
shortest = min( features[filename_a].shape[0], features[filename_b].shape[0] )
|
||||
similarity = torch.nn.functional.cosine_similarity(features[filename_a][:shortest, :], features[filename_b][:shortest, :], dim=1).mean().item()
|
||||
if slop:
|
||||
embedding_a = features[filename_a]
|
||||
embedding_b = features[filename_b]
|
||||
|
||||
similarity = torch.nn.functional.cosine_similarity(embedding_a, embedding_b, dim=0).mean().item()
|
||||
else:
|
||||
shortest = min( features[filename_a].shape[0], features[filename_b].shape[0] )
|
||||
embedding_a = features[filename_a][:shortest, :]
|
||||
embedding_b = features[filename_b][:shortest, :]
|
||||
|
||||
similarity = torch.nn.functional.cosine_similarity(embedding_a, embedding_b, dim=1).mean().item()
|
||||
|
||||
similarities[key] = similarity
|
||||
|
||||
|
@ -175,13 +268,6 @@ def process(
|
|||
if index_a not in sorted_similarities[index_b]:
|
||||
sorted_similarities[index_b][index_a] = similarity
|
||||
|
||||
metadata = None
|
||||
if metadata_path is not None:
|
||||
if metadata_path.exists():
|
||||
metadata = json.loads(open( metadata_path, "r", encoding="utf-8" ).read())
|
||||
else:
|
||||
metadata = {}
|
||||
|
||||
# sort similarities scores
|
||||
for key, sorted_similarity in sorted_similarities.items():
|
||||
sorted_similarities[key] = sorted([ ( key, similarity ) for key, similarity in sorted_similarity.items() ], key=lambda x: x[1], reverse=True)
|
||||
|
@ -201,9 +287,7 @@ def process(
|
|||
|
||||
if metadata is not None:
|
||||
with open(str(metadata_path), "w", encoding="utf-8") as f:
|
||||
serialized = json.dumps( metadata )
|
||||
serialized = truncate_json( serialized )
|
||||
f.write( serialized )
|
||||
f.write( truncate_json( json.dumps( metadata ) ) )
|
||||
|
||||
return sorted_similarities
|
||||
|
||||
|
@ -215,10 +299,13 @@ def main():
|
|||
|
||||
parser.add_argument("--yaml", type=Path)
|
||||
parser.add_argument("--text", action="store_true")
|
||||
parser.add_argument("--maximum-duration", type=float, default=3.0)
|
||||
parser.add_argument("--trim-duration", type=float, default=3.0)
|
||||
parser.add_argument("--min-duration", type=float, default=0)
|
||||
parser.add_argument("--max-duration", type=float, default=0)
|
||||
parser.add_argument("--storage-backend", type=str, default="slop")
|
||||
|
||||
parser.add_argument("--audio-backend", type=str, default="encodec")
|
||||
parser.add_argument("--dtype", type=str, default="float16")
|
||||
parser.add_argument("--dtype", type=str, default="float32")
|
||||
parser.add_argument("--amp", action="store_true")
|
||||
parser.add_argument("--device", type=str, default="cpu") # unironically faster
|
||||
|
||||
|
@ -236,10 +323,13 @@ def main():
|
|||
|
||||
process(
|
||||
speaker_path=cfg.data_dir / speaker_name,
|
||||
metadata_path=cfg.metadata_dir / f'{speaker_name}.json',
|
||||
metadata_path=cfg.metadata_dir / f'{speaker_name}.faiss',
|
||||
yaml=args.yaml,
|
||||
text=args.text,
|
||||
maximum_duration=args.maximum_duration,
|
||||
trim_duration=args.trim_duration,
|
||||
min_duration=args.min_duration,
|
||||
max_duration=args.max_duration,
|
||||
storage_backend=args.storage_backend,
|
||||
|
||||
audio_backend=args.audio_backend,
|
||||
device=args.device,
|
||||
|
@ -260,18 +350,22 @@ def main():
|
|||
# noise
|
||||
for data_dir in tqdm(sorted(cfg.dataset.noise), desc='Processing Noise'):
|
||||
add( data_dir, type="noise", texts=False )
|
||||
|
||||
elif args.input_speaker:
|
||||
process(
|
||||
speaker_path=args.input_speaker,
|
||||
yaml=args.yaml,
|
||||
text=args.text,
|
||||
maximum_duration=args.maximum_duration,
|
||||
trim_duration=args.trim_duration,
|
||||
min_duration=args.min_duration,
|
||||
max_duration=args.max_duration,
|
||||
|
||||
audio_backend=args.audio_backend,
|
||||
device=args.device,
|
||||
dtype=args.dtype,
|
||||
amp=args.amp,
|
||||
|
||||
storage_backend=args.storage_backend,
|
||||
verbose=True,
|
||||
)
|
||||
else:
|
||||
|
|
Loading…
Reference in New Issue
Block a user