solved my problem

This commit is contained in:
mrq 2024-09-17 21:58:44 -05:00
parent 8f41d1b324
commit be22b65300

View File

@ -24,7 +24,6 @@ import torchaudio.transforms as T
from ..config import cfg
from ..utils import truncate_json
# need to validate if this is safe to import before modifying the config
from .g2p import encode as phonemize
from .qnt import encode as quantize, trim, convert_audio
@ -55,8 +54,11 @@ def process(
verbose=False,
metadata_path=None,
maximum_duration=0,
#use_faiss=True,
trim_duration=0,
min_duration=0,
max_duration=0,
storage_backend="local"
):
global tts
@ -75,14 +77,15 @@ def process(
similarities = {}
sorted_similarities = {}
mfcc = T.MFCC(sample_rate=cfg.sample_rate)
mfcc = None
"""
# too slow
if use_faiss:
import faiss
index = None
"""
slop = False # should probably have a better name for this, but it governs whether to just sum the entire sequence of embeddings into one embedding to make life easier
if storage_backend == "faiss":
slop = True
elif storage_backend == "chunkdot":
slop = True
elif storage_backend == "slop":
slop = True
# compute features (embeddings if quantized already, MFCC features if raw audio)
for filename in tqdm(os.listdir(f'./{speaker_path}/'), desc=f"Encoding '{speaker_path}'", disable=not verbose):
@ -94,6 +97,13 @@ def process(
raise Exception("!")
artifact = np.load(f'./{speaker_path}/{filename}.{extension}', allow_pickle=True)[()]
duration = artifact["metadata"]["original_length"] / artifact["metadata"]["sample_rate"]
if 0 < min_duration and duration < min_duration:
continue
if 0 < max_duration and max_duration < duration:
continue
lang = artifact["metadata"]["language"] if "language" in artifact["metadata"]["language"] else "en"
if "phonemes" in artifact["metadata"]:
@ -111,42 +121,116 @@ def process(
# treat embeddings as features, if provided quantized audio
if extension in artifact_extension:
artifact = np.load(f'./{speaker_path}/{filename}.{extension}', allow_pickle=True)[()]
duration = artifact["metadata"]["original_length"] / artifact["metadata"]["sample_rate"]
if 0 < min_duration and duration < min_duration:
continue
if 0 < max_duration and max_duration < duration:
continue
qnt = torch.from_numpy(artifact["codes"].astype(int))[0].t().to(dtype=torch.int16, device=device)
if maximum_duration > 0:
qnt = trim( qnt, int( cfg.dataset.frames_per_second * maximum_duration ) )
if trim_duration > 0:
qnt = trim( qnt, int( cfg.dataset.frames_per_second * trim_duration ) )
embedding = tts.audio_embedding( qnt )
# try and extract features from the raw audio itself
else:
# qnt = tts.encode_audio(f'./{speaker_path}/{filename}', trim_length=3.0).to(device)
wav, sr = load_audio( f'./{speaker_path}/{filename}.{extension}' )
duration = wav.shape[-1] / sr
if 0 < min_duration and duration < min_duration:
continue
if 0 < max_duration and max_duration < duration:
continue
if mfcc is None:
mfcc = T.MFCC(sample_rate=cfg.sample_rate)
embedding = mfcc(wav.to(device))[0].t()
if slop:
embedding = embedding.sum(dim=0)
features[filename] = embedding
# rely on FAISS to handle storing embeddings and handling queries
# will probably explode in size fast...........
if storage_backend == "faiss":
import faiss
index = faiss.IndexFlatL2( embeddings.shape[-1] )
embeddings = torch.stack( list( features.values() ) ).cpu()
index.add( embeddings )
"""
if use_faiss:
if index is None:
shape = embedding.shape
index = faiss.IndexFlatL2(shape[1])
index.add(embedding.cpu())
# to-do: support just querying for list of similar to cram into JSON metadata
if verbose:
for filename, embedding in features.items():
D, I = index.search(embedding.cpu(), k=3)
# print(f'{filename}: {I[1:]}')
if metadata_path is not None:
index.save(metadata_path)
D, I = index.search(embedding.unsqueeze(0).cpu(), k=2)
sim = list(I[0][1:])
print(f'{filename}: {sim}')
"""
keys = list(features.keys())
key_range = range(len(keys))
# queue = [ (index_a, index_b) for index_b in key_range for index_a in key_range if index_a != index_b ]
queue = list(combinations(key_range, 2))
if metadata_path is not None:
faiss.write_index(index, str(metadata_path.with_suffix(".faiss")))
return
# compute similarities for every utternace
"""
# to-do: actually refine this, maybe
# desu it's not super easy to install with python3.12, and it is slower than FAISS in testing............
if storage_backend == "chunkdot":
from chunkdot import cosine_similarity_top_k
embeddings = torch.stack( list( features.values() ) ).cpu().numpy()
similarities = cosine_similarity_top_k(embeddings, top_k=8, show_progress=verbose)
print(similarities)
return
"""
metadata = None
if metadata_path is not None:
metadata = json.loads(open( metadata_path, "r", encoding="utf-8" ).read()) if metadata_path.exists() else None
keys = list(features.keys())
# do batch cosine similarity processing
if slop:
embeddings = torch.stack( list( features.values() ) )
sorted_similarities = {}
for index, filename in enumerate(keys):
embedding = features[filename].unsqueeze(0)
similarities = torch.nn.functional.cosine_similarity(embedding, embeddings, dim=1).cpu().tolist()
similarities = sorted([ ( keys[i], similarity ) for i, similarity in enumerate( similarities ) if index != i ], key=lambda x: x[1], reverse=True)
sorted_similarities[filename] = similarities
most_filename, most_score = similarities[0]
least_filename, least_score = similarities[-1]
if metadata is not None:
if filename not in metadata:
metadata[filename] = {}
metadata[filename]["similar"] = similarities
if verbose:
print( f'{filename}:\n\tMost: {most_filename} ({most_score:.3f})\n\tLeast: {least_filename} ({least_score:.3f})' )
if metadata is not None:
with open(str(metadata_path), "w", encoding="utf-8") as f:
f.write( truncate_json( json.dumps( metadata ) ) )
return sorted_similarities
# an EXTREMELY naive implementation, fucking disgusting
queue = list(combinations(range(len(keys)), 2))
for key in tqdm(queue, desc="Computing similarities", disable=not verbose):
index_a, index_b = key
filename_a, filename_b = keys[index_a], keys[index_b]
@ -156,8 +240,17 @@ def process(
similarities[key] = similarities[swapped_key]
continue
shortest = min( features[filename_a].shape[0], features[filename_b].shape[0] )
similarity = torch.nn.functional.cosine_similarity(features[filename_a][:shortest, :], features[filename_b][:shortest, :], dim=1).mean().item()
if slop:
embedding_a = features[filename_a]
embedding_b = features[filename_b]
similarity = torch.nn.functional.cosine_similarity(embedding_a, embedding_b, dim=0).mean().item()
else:
shortest = min( features[filename_a].shape[0], features[filename_b].shape[0] )
embedding_a = features[filename_a][:shortest, :]
embedding_b = features[filename_b][:shortest, :]
similarity = torch.nn.functional.cosine_similarity(embedding_a, embedding_b, dim=1).mean().item()
similarities[key] = similarity
@ -175,13 +268,6 @@ def process(
if index_a not in sorted_similarities[index_b]:
sorted_similarities[index_b][index_a] = similarity
metadata = None
if metadata_path is not None:
if metadata_path.exists():
metadata = json.loads(open( metadata_path, "r", encoding="utf-8" ).read())
else:
metadata = {}
# sort similarities scores
for key, sorted_similarity in sorted_similarities.items():
sorted_similarities[key] = sorted([ ( key, similarity ) for key, similarity in sorted_similarity.items() ], key=lambda x: x[1], reverse=True)
@ -201,9 +287,7 @@ def process(
if metadata is not None:
with open(str(metadata_path), "w", encoding="utf-8") as f:
serialized = json.dumps( metadata )
serialized = truncate_json( serialized )
f.write( serialized )
f.write( truncate_json( json.dumps( metadata ) ) )
return sorted_similarities
@ -215,10 +299,13 @@ def main():
parser.add_argument("--yaml", type=Path)
parser.add_argument("--text", action="store_true")
parser.add_argument("--maximum-duration", type=float, default=3.0)
parser.add_argument("--trim-duration", type=float, default=3.0)
parser.add_argument("--min-duration", type=float, default=0)
parser.add_argument("--max-duration", type=float, default=0)
parser.add_argument("--storage-backend", type=str, default="slop")
parser.add_argument("--audio-backend", type=str, default="encodec")
parser.add_argument("--dtype", type=str, default="float16")
parser.add_argument("--dtype", type=str, default="float32")
parser.add_argument("--amp", action="store_true")
parser.add_argument("--device", type=str, default="cpu") # unironically faster
@ -236,10 +323,13 @@ def main():
process(
speaker_path=cfg.data_dir / speaker_name,
metadata_path=cfg.metadata_dir / f'{speaker_name}.json',
metadata_path=cfg.metadata_dir / f'{speaker_name}.faiss',
yaml=args.yaml,
text=args.text,
maximum_duration=args.maximum_duration,
trim_duration=args.trim_duration,
min_duration=args.min_duration,
max_duration=args.max_duration,
storage_backend=args.storage_backend,
audio_backend=args.audio_backend,
device=args.device,
@ -260,18 +350,22 @@ def main():
# noise
for data_dir in tqdm(sorted(cfg.dataset.noise), desc='Processing Noise'):
add( data_dir, type="noise", texts=False )
elif args.input_speaker:
process(
speaker_path=args.input_speaker,
yaml=args.yaml,
text=args.text,
maximum_duration=args.maximum_duration,
trim_duration=args.trim_duration,
min_duration=args.min_duration,
max_duration=args.max_duration,
audio_backend=args.audio_backend,
device=args.device,
dtype=args.dtype,
amp=args.amp,
storage_backend=args.storage_backend,
verbose=True,
)
else: