From c56ce033d908359a0875043fa9aec1354b9782e6 Mon Sep 17 00:00:00 2001 From: mrq Date: Sun, 3 Sep 2023 21:27:58 -0500 Subject: [PATCH] work on an interleaved AR (spoiler: it does not work) --- vall_e/ext/interleaver.py | 2 + vall_e/models/interleaved_ar.py | 599 ++++++++++++++++++++++++++++++++ 2 files changed, 601 insertions(+) create mode 100644 vall_e/ext/interleaver.py create mode 100644 vall_e/models/interleaved_ar.py diff --git a/vall_e/ext/interleaver.py b/vall_e/ext/interleaver.py new file mode 100644 index 0000000..f7d9590 --- /dev/null +++ b/vall_e/ext/interleaver.py @@ -0,0 +1,2 @@ +# From: https://github.com/facebookresearch/audiocraft/blob/main/audiocraft/modules/codebooks_patterns.py +# audiocraft has heavy dependencies, so it doesn't make sense to depend on it just for this file. \ No newline at end of file diff --git a/vall_e/models/interleaved_ar.py b/vall_e/models/interleaved_ar.py new file mode 100644 index 0000000..08b7921 --- /dev/null +++ b/vall_e/models/interleaved_ar.py @@ -0,0 +1,599 @@ +import math +import torch +import torch.nn.functional as F +import traceback + +from typing import Literal, overload +from functools import partial +from einops import rearrange + +from torch import Tensor, einsum, nn +from torch.distributions import Categorical +from torch.nn.utils.rnn import pad_sequence +from torch.utils.checkpoint import checkpoint +from torchmetrics.classification import BinaryAccuracy, MulticlassAccuracy, MulticlassPrecision + +from .retnet import RetNetDecoder, RetNetConfig +from .transformer import SinusoidalEmbedding, Block as TransformerBlock + +from ..ext.interleaver import ( + CodebooksPatternProvider, + DelayedPatternProvider, + MusicLMPattern, + ParallelPatternProvider, + UnrolledPatternProvider, + VALLEPattern, +) + +from ..config import cfg + +def _get_pattern_provider( name ): + return { + 'parallel': ParallelPatternProvider, + 'delay': DelayedPatternProvider, + 'unroll': UnrolledPatternProvider, + 'valle': VALLEPattern, + 'musiclm': MusicLMPattern, + }[name] + +def _create_mask(l, device): + """1 is valid region and 0 is invalid.""" + seq = torch.arange(max(l), device=device).unsqueeze(0) # (1 t) + stop = torch.tensor(l, device=device).unsqueeze(1) # (b 1) + return (seq < stop).float() # (b t) + +def _join(x: tuple[Tensor], sep: Tensor): + """ + Args: + x: (k t d) + sep: (d) + """ + ret = x[0] + for i in range(1, len(x)): + ret = torch.cat((ret, sep[None], x[i]), dim=0) + return ret + +def list_to_tensor(x_list: list[Tensor], pattern="t b c -> b t c"): + """ + Args: + x_list: [(t d)] + Returns: + x: (? ? ?) + m: (? ? ?), same as x + """ + l = list(map(len, x_list)) + x = rearrange(pad_sequence(x_list), pattern) + m = _create_mask(l, x_list[0].device) + m = m.t().unsqueeze(-1) # (t b 1) + m = rearrange(m, pattern) + m = m.to(x) + return x, m + +class Embedding(nn.Embedding): + def forward(self, x_list: list[Tensor]) -> list[Tensor]: + if len(x_list) == 0: + return [] + + return super().forward(torch.cat(x_list)).split([*map(len, x_list)]) + + +class MultiEmbedding(nn.Embedding): + """ + This embedding sums embeddings on different levels. + """ + + def __init__(self, max_n_levels, n_tokens, token_dim): + super().__init__(max_n_levels, token_dim) + self.max_n_levels = max_n_levels + self.n_tokens = n_tokens + self.weight = nn.Parameter(torch.randn(max_n_levels, n_tokens, token_dim)) + + def forward(self, x_list: list[Tensor]) -> list[Tensor]: + if len(x_list) == 0: + return [] + + w = self.weight + + padded_x_list = [] + + for xi in x_list: + xi = F.one_hot(xi.to(torch.int64), num_classes=self.n_tokens) # t l' k + xi = F.pad(xi, (0, 0, 0, w.shape[0] - xi.shape[1])) # t l k + padded_x_list.append(xi.to(w)) + + x = torch.cat(padded_x_list) # n l k + x = einsum("l k d, n l k -> n d", w, x) + + x_list = x.split([*map(len, x_list)]) + + return x_list + + +class Base(nn.Module): + @property + def causal(self): + return True + + @property + def use_stop_token(self): + return True + + @property + def norm_type(self): + return "ln" + + @property + def arch_type(self) -> str: + return "retnet" + + @property + def n_prom_levels(self) -> int: + return 4 + + @property + def n_resp_levels(self) -> int: + return 4 + + @property + def n_max_levels(self) -> int: + return 4 + + @property + def n_tasks(self) -> int: + return 16 + + @property + def resp_loss_only(self) -> bool: + return False + + @property + def recurrent_chunk_size(self) -> int: + return 0 + + @property + def interleave_pattern(self) -> str | None: + return "musiclm" + + @property + def stop_token(self): + return self.n_tokens + 0 + + @property + def interleaved_token(self): + return self.n_tokens + 1 + + @property + def ignore_index(self): + return -100 # self.interleaved_token + + def _prune(self, l: Tensor): + indices = (l == self.stop_token).nonzero() + if len(indices) == 0: + return l + return l[: indices.min().item()] + + @staticmethod + def _unsqueeze_list(x_list, axis=-1): + return [x.unsqueeze(dim=axis) for x in x_list] + + @staticmethod + def _samplewise_merge_tensors(*l, sep: Tensor | None): + if sep is None: + cat = torch.cat + else: + cat = partial(_join, sep=sep) + return [*map(cat, zip(*l))] + + def _interleave( self, codes ): + if not self.interleave_pattern: + return codes + + return codes.flatten() + """ + pattern_provider = _get_pattern_provider( self.interleave_pattern )( self.n_resp_levels ) + pattern = pattern_provider.get_pattern( codes.shape[0] ) + res, _, _ = pattern.build_pattern_sequence( codes.t()[None, :, :], self.interleaved_token, keep_only_valid_steps=True ) + return res[0].t().flatten() + """ + + def _deinterleave( self, codes ): + if not self.interleave_pattern: + return codes + + return torch.unflatten( codes[:codes.shape[0] // self.n_resp_levels * self.n_resp_levels], 0, ( codes.shape[0] // self.n_resp_levels, self.n_resp_levels ) ) + """ + if codes.dim() == 1: + codes = torch.unflatten( codes[:codes.shape[0] // self.n_resp_levels * self.n_resp_levels], 0, ( codes.shape[0] // self.n_resp_levels, self.n_resp_levels ) ) + + pattern_provider = _get_pattern_provider( self.interleave_pattern )( self.n_resp_levels ) + pattern = pattern_provider.get_pattern( codes.shape[0] ) + res, _, _ = pattern.revert_pattern_sequence( codes, special_token=self.interleaved_token) + return res[0].t() + """ + + def __init__( + self, + n_tokens: int = 1024, + d_model: int = 512, + n_heads: int = 8, + n_layers: int = 12, + p_dropout: float = 0.1, + + config: dict | None = None + ): + super().__init__() + self._cfg = config + self.n_tokens = n_tokens + self.d_model = d_model + self.n_heads = n_heads + self.n_layers = n_layers + + # + tasks for each token they represent in the prom + n_prom_tokens = n_tokens + (self.n_tasks - 1) + (1 if self.interleave_pattern else 0) # - 1 because tts is an inherent task + # +1 to include the stop token + 1 to include interleave token + n_resp_tokens = n_tokens + (1 if self.use_stop_token else 0) + (1 if self.interleave_pattern else 0) # AR requires a stop token to... know when to stop + + self.text_emb = Embedding(n_tokens, d_model) + self.proms_emb = MultiEmbedding(self.n_prom_levels, n_prom_tokens, d_model) + self.resps_emb = MultiEmbedding(1, n_resp_tokens, d_model) + + self.sep = nn.Parameter(torch.randn(d_model)) + + if self.arch_type == "transformer": + self.sin_emb = SinusoidalEmbedding(d_model) + self.blocks = nn.ModuleList([TransformerBlock( + d_model=d_model, + n_heads=n_heads, + p_dropout=p_dropout, + causal=self.causal, + norm_type=self.norm_type, + n_levels=1, + ) for _ in range(n_layers) ]) + + elif self.arch_type == "retnet": + self.retnet = RetNetDecoder(RetNetConfig( + vocab_size=n_tokens, + decoder_embed_dim=d_model, + decoder_retention_heads=n_heads, + decoder_ffn_embed_dim=d_model * 4, + decoder_layers=n_layers, + dropout=p_dropout, + checkpoint_activations=True, + + chunkwise_recurrent=self.causal and self.recurrent_chunk_size > 0, + recurrent_chunkwise_size=self.recurrent_chunk_size if self.causal else 0, + no_output_layer=True, + decoder_normalize_before=True, + )) + + # I imagine because each step returns `resp_level`s tokens at once, so we need to have a classifier for each level + #self.classifier = nn.ModuleList([ nn.Linear(d_model, n_resp_tokens) for _ in range(self.n_resp_levels) ]) if self.interleave_pattern else nn.Linear(d_model, n_resp_tokens) + self.classifier = nn.Linear(d_model, n_resp_tokens) + + self.accuracy_metric = MulticlassAccuracy( + n_resp_tokens, + top_k=10, + average="micro", + multidim_average="global", + ignore_index=self.ignore_index, + ) + + self.precision_metric = MulticlassPrecision( + n_resp_tokens, + top_k=10, + average="micro", + multidim_average="global", + ignore_index=self.ignore_index, + ) + + @overload + def forward( + self, + text_list: list[Tensor], + proms_list: list[Tensor], + resps_list: list[Tensor], + targ_list: list[Tensor] | None = None, + quant_levels: Tensor | None = None, + shift_targ_list: bool = False, + return_all: Literal[False] = False, + return_all_resp: Literal[False] = False, + sampling_temperature: float = 1.0, + ) -> Tensor: + ... + + @overload + def forward( + self, + text_list: list[Tensor], + proms_list: list[Tensor], + resps_list: list[Tensor], + targ_list: list[Tensor] | None = None, + quant_levels: Tensor | None = None, + shift_targ_list: bool = False, + return_all: Literal[True] = True, + return_all_resp: Literal[True] = True, + sampling_temperature: float = 1.0, + ) -> list[Tensor]: + ... + + def _forward( + self, + text_list: list[Tensor], + proms_list: list[Tensor], + resps_list: list[Tensor], + targ_list: list[Tensor] | None = None, + quant_levels: Tensor | None = None, + shift_targ_list: bool = False, + return_all: bool = False, + return_all_resp: bool = False, + sampling_temperature: float = 1.0, + + state: dict | None = None, + ): + """ + Args: + text_list: [t] * b + proms_list: [t' l] * b, l quantization levels. + resps_list: [t'' l] * b, l quantization levels. + targ_list: [t''] * b, one quantization level only; when given, loss will be computed + quant_levels: specify which quant_levels to feed forward, used in NAR mode. + shift_targ_list: whether to shift target list when computing loss. True if AR. + return_all_resp: True if NAR. + sampling_temperature: a lower temperature makes the result more robust but less diverse. + Returns: + y: sampled tokens + """ + + batch_size = len(text_list) + + x_list = self._samplewise_merge_tensors( + self.text_emb(text_list), + self.proms_emb(proms_list), + self.resps_emb(resps_list), + sep=self.sep, + ) + + x, m = list_to_tensor(x_list) + device = x.device + + if state is not None: + # prefill + prefill_size = x.shape[1] + + # run the initial prompt to fill the KV cache + if len(state) == 0: + for n in range(prefill_size): + xi = x[:, n, :].unsqueeze(1) + self.retnet(xi, incremental_state=state, token_embeddings=xi, features_only=True) + + # grab last token(s) + x = x[:, -1, :].unsqueeze(1) + + if self.arch_type == "transformer": + x = self.sin_emb.add_pe(x) + for block in self.blocks: + x = block(x, m, quant_levels) + elif self.arch_type == "retnet": + # to-do: actually make this work and verify it works with recurrent_forward / chunkwise_forward + x, _ = self.retnet(x, incremental_state=state, token_embeddings=x, features_only=True) + + x = self.classifier(x) * m + + # Remove padding + h_list = [hi[:li] for hi, li in zip(x, map(len, x_list))] + + if True: + logits = [hi[:] for hi, li in zip(h_list, map(len, resps_list))] + ret = [ Categorical(logits=hi / sampling_temperature).sample() for hi in logits ] + print( [ r for r in ret ] ) + + # compute loss if the target is given + if targ_list is not None: + if any([l == 0 for l in map(len, targ_list)]): + raise ValueError("Cannot compute loss given empty targ_list.") + + ignore_sep = torch.tensor(self.ignore_index, device=device) + + # ignore the prompt when computing loss + prom_list = [ + torch.full_like(t[..., 0], self.ignore_index) for t in proms_list + ] + # remake input with ignored input prompt + text_prom_list = self._samplewise_merge_tensors( + text_list, prom_list, sep=ignore_sep + ) + + for i in range(len(text_prom_list)): + # ignore computing loss against text/prompt portion of input + # the NAR doesn't need to compute the loss for it + if self.resp_loss_only: + text_prom_list[i][:] = self.ignore_index + + # roll the text/prompt for loss computing + # the AR benefits from this, for some reason I'll figure out later + else: + text_prom_list[i] = text_prom_list[i].roll(-1, dims=0) + text_prom_list[i][-1] = self.ignore_index + + # for the AR, roll by one and mark the ending with a stop token + # this coerces the model into properly inferencing causally + + # why we don't just append a stop token in the dataloader, who knows + if shift_targ_list: + targ_list = [*targ_list] + for i in range(len(targ_list)): + targ_list[i] = targ_list[i].roll(-self.n_resp_levels, dims=0) + for j in range(self.n_resp_levels): + targ_list[i][-j-1] = self.stop_token + + # create the new target sequence to compute the loss against + y_list = self._samplewise_merge_tensors( text_prom_list, targ_list, sep=ignore_sep ) + + self.loss = dict( + nll=F.cross_entropy( + torch.cat(h_list), # input / predicted logits + torch.cat(y_list), # target / ground truth + ignore_index=self.ignore_index, + ) + ) + self.stats = dict( + acc = self.accuracy_metric( torch.cat(h_list), torch.cat(y_list) ), + precision = self.precision_metric( torch.cat(h_list), torch.cat(y_list) ), + ) + + # return the entire generated token string + if return_all: + logits = [hi[:] for hi, li in zip(h_list, map(len, resps_list))] + # return the entire generated response + elif return_all_resp: + logits = [hi[-li:] for hi, li in zip(h_list, map(len, resps_list))] + # return the last chunkwise piece + elif self.causal and self.recurrent_chunk_size > 0: + logits = [hi[-self.recurrent_chunk_size:] for hi, li in zip(h_list, map(len, resps_list))] + # return just the last code + else: + logits = [ hi[-1:] for hi in h_list ] + + return [ Categorical(logits=hi / sampling_temperature).sample() for hi in logits ] + + def forward( + self, + text_list: list[Tensor], + proms_list: list[Tensor], + resps_list: list[Tensor] | None = None, + max_steps: int = 1000, + sampling_temperature: float = 1.0, + ): + if resps_list is not None: + resps_list = [self._interleave(r) for r in resps_list] # guarantees we only have the first levels + + return self._forward( + text_list=text_list, + proms_list=proms_list, + resps_list=self._unsqueeze_list(resps_list), + targ_list=resps_list, + quant_levels=None, + shift_targ_list=True, + return_all_resp=False, + ) + + device = text_list[0].device + batch_size = len(text_list) + + resps_list: list[Tensor] = [ torch.zeros(0, device=device).to(torch.int16) for _ in text_list ] + stopped = torch.zeros(batch_size, device=device).bool() + + state = {} if cfg.inference.recurrent_forward else None + + for n in range(max_steps // max(1, self.recurrent_chunk_size)): + # get next in sequence + + r = self._forward( + text_list, + proms_list, + self._unsqueeze_list(resps_list), + sampling_temperature=sampling_temperature, + state=state + ) + + # append tokens + for i, ri in enumerate(r): + if self.stop_token in ri: + stopped[i] = True + resps_list[i] = torch.cat([resps_list[i], ri]) + + # stop token found + stopped |= r == self.stop_token + if stopped.all().item(): + break + + + pruned = [self._prune(r) for r in resps_list] + print( [ r for r in pruned ] ) + deinterleaved = [ self._deinterleave(r) for r in pruned ] + print( [ r for r in deinterleaved ] ) + return deinterleaved + +def example_usage(): + from ..config import cfg + cfg.trainer.backend = "local" + cfg.trainer.check_for_oom = False + + from functools import partial + + from einops import repeat + + from ..emb.qnt import decode_to_file + from ..engines import Engine, Engines + from tqdm import tqdm, trange + + device = "cuda" + x8 = partial(repeat, pattern="t -> t l", l=cfg.models.prom_levels) + symmap = {'': 1, '': 2, ' ': 3, '.': 4, ',': 5, '!': 6, '?': 7, 'p': 7, 'iː': 8, 'ɚ': 9, 'ˌ': 10, 'dˌ': 11, 'mˌ': 12, 'd': 13, 'ɹ': 14, 'tˈ': 15, 'pˌ': 16, 'uː': 17, 'l': 18, 'æ': 19, 'ɛ': 20, 'ɪ': 21, 'j': 22, 'ʊ': 23, 't': 24, 'n': 25, 'v': 26, 'a': 27, 'o': 28, 'ŋ': 29, 'w': 30, 'ʌ': 31, 'hˈ': 32, 'ɡˈ': 33, 'ə': 34, 'θˈ': 35, 'dˈ': 36, 'wˌ': 37, 'h': 38, 'z': 39, 'k': 40, 'ð': 41, 'ɡˌ': 42, 'ˈ': 43, 'fˈ': 44, 'i': 45, 's': 46, 'ʃ': 47, 'wˈ': 48, 'ðˈ': 49, 'ɹˈ': 50, 'lˈ': 51, 'ɡ': 52, 'oː': 53, 'mˈ': 54, 'e': 55, 'ɑː': 56, 'nˈ': 57, 'm': 58, 'θˌ': 59, 'sˈ': 60, 'f': 61, 'ɔː': 62, 'hˌ': 63, 'b': 64, 'jˈ': 65, 'ɐ': 66, 'ʒˈ': 67, 'θ': 68, 'bˈ': 69, 'ɾ': 70, 'ɜː': 71, 'ʌˈ': 72, 'ʃˌ': 73, 'bˌ': 74, 'kˈ': 75, 'ɔ': 76, 'zˈ': 77, 'ᵻ': 78, 'kˌ': 79, 'vˈ': 80, 'fˌ': 81, 'ʒ': 82, 'ʃˈ': 83, 'ɹˌ': 84, 'tˌ': 85, 'pˈ': 86, 'ðˌ': 87, 'sˌ': 88, 'nˌ': 89, 'lˌ': 90, '̩': 91, 'ʔ': 92, 'vˌ': 93, 'ɪˈ': 94, '"': 95, 'ɪˌ': 96, 'ʒˌ': 97, 'uːˌ': 98, 'ʊˈ': 99, 'jˌ': 100, 'uːˈ': 101, 'iːˈ': 102, 'zˌ': 103, '.ˈ': 104, '…': 105, 'ŋˌ': 106, 'ɐˌ': 107, '—ˈ': 108, 'iˌ': 109, 'iːˌ': 110, 'ɛː': 111, ')': 112, ')ˈ': 113, '(': 114, 'u': 115, '-': 116, 'ɖˈ': 117, 'iˈ': 118, 'ʰˈ': 119, 'ɟˈ': 120, '̃': 121, 'eː': 122, 'ɾˈ': 123, 'r': 124, 'ʰ': 125, '-ˌ': 126, 'ɫ': 127, 'q': 128, '—': 129, 'ʊˌ': 130, 'aː': 131, 'cˈ': 132, '…ˈ': 133, 'c': 134, 'ɳ': 135, 'ɐˈ': 136, 'x': 137, 'ʔˌ': 138, '.ˌ': 139, 'ɑ': 140, '?ˈ': 141, '̩ˈ': 142, '"ˈ': 143, ',ˈ': 144, 'ŋˈ': 145, 'əˌ': 146, '!ˈ': 147, '"ˌ': 148, '?ˌ': 149, ',ˌ': 150, '—ˌ': 151, '̩ˌ': 152, 'əˈ': 153, '!ˌ': 154, 'ɬ': 155, 'ʲ': 156, '¡': 157, 'ɯ': 158, 'qˌ': 159, 'ʑ': 160, 'ʑˈ': 161, '¿': 162, 'ɑːˈ': 163, 'iːː': 164, 'ɛˈ': 165, '¡ˈ': 166, 'æˈ': 167, 'ç': 168, 'ɾˌ': 169, 'ᵻˈ': 170, 'xˈ': 171, 'ɔːˈ': 172, ';': 173, 'ɬˌ': 174, ':': 175, 'ʔˈ': 176, 'ɑːˌ': 177, 'ɬˈ': 178} + def tokenize(content, lang_marker="en"): + split = content.split(" ") + phones = [f""] + [ " " if not p else p for p in split ] + [f""] + return torch.tensor([*map(symmap.get, phones)]).to() + + kwargs = { + 'n_tokens': 1024, + 'd_model': 1024, + 'n_heads': 16, + 'n_layers': 12, + } + models = { "ar": Base(**kwargs).to(device) } + + for name, model in models.items(): + print(f"{name} parameter count: {sum(p.numel() for p in model.parameters() if p.requires_grad)}") + + engines = Engines({ name: Engine(model=model, optimizer=torch.optim.AdamW(model.parameters(), lr=1e-4)) for name, model in models.items() }) + + train = True + + qnt = torch.load("data/qnt.pt")[0].t()[:, :cfg.models.prom_levels].to(device) + text_list = [ + tokenize("ˈ a ɪ w ɪ l nˌ ɑː t ˈ æ s k ɐ sˈ ɛ k ə n d tˈ a ɪ m").to(device), + #tokenize("ˌ ɔ n ɡˌ o ʊ ɪ ŋ hˈ o ʊ m ð ə tˈ uː f ɹˈ ɛ n d z fˈ a ʊ n d ɐ lˈ ɛ ɾ ɚ f ɹ ʌ m ˈ æ θ o ʊ z , hˌ uː d ɪ zˈ a ɪ ɚ d ðˌ ɛ m t ə mˈ iː t hˌ ɪ m æ t ð ə ɡ ɹˈ æ n d t ʃˈ ɑː ɹ l ɪ mˌ æ ɡ n i ɔ n ð ə fˈ ɑː l o ʊ ɪ ŋ dˈ e ɪ .").to(device), + ] + + proms_list = [ + qnt.to(device), + ] + resps_list = [ + qnt.to(device), + ] + + def sample( filename, steps=400 ): + AR = None + + engines.eval() + for name, engine in engines.items(): + if name[:2] == "ar": + AR = engine + + resps_list = AR(text_list, proms_list, max_steps=steps, sampling_temperature=1.0) + + decode_to_file(resps_list[0].cpu(), f"./data/{filename}.wav", device="cpu") + + if train: + sample("init", 15) + + engines.train() + t = trange(100) + for i in t: + stats = {"step": i} + """ + for name, engine in engines.items(): + stats |= engine.traverse(text_list=text_list, proms_list=proms_list, resps_list=resps_list) + """ + stats = engines.step({"text_list": text_list, "proms_list": proms_list, "resps_list": resps_list}) + tqdm.write(f"{stats}") + else: + for name, engine in engines.items(): + engine.module.load_state_dict(torch.load(f"./data/{name}.pth")) + + sample("final") + + +if __name__ == "__main__": + example_usage()