fixes and compat (MoE-fying an existing model and retraining from there just ruins it after a second of audio...)

This commit is contained in:
mrq 2023-12-25 21:20:32 -06:00
parent e513d2ef19
commit c690aa509d
5 changed files with 69 additions and 41 deletions

View File

@ -184,7 +184,7 @@ class Model:
name.append(self.size)
if self.arch_type != "transformer":
if self.experts:
if self.experts > 1:
name.append(f'{self.experts}x'+self.arch_type.replace("/", "-"))
else:
name.append(self.arch_type.replace("/", "-"))

View File

@ -13,6 +13,7 @@ from .base import Engines, TrainFeeder, default_feeder, Engine as _Engine
from ..models import get_models
from ..utils import wrapper as ml
import torch
import re
deepspeed_available = False
try:
@ -90,6 +91,22 @@ def load_engines():
if "module" in state:
state = state["module"]
# maintain compat if I change variable names
insert = {}
erase = []
for k in state.keys():
key = re.sub(r'^retnet\.', "model.", k)
if k != key:
insert[key] = state[k]
erase.append(k)
for k in insert.keys():
state[k] = insert[k]
for k in erase:
del state[k]
model.load_state_dict(state, strict=cfg.trainer.strict_loading)
# deepspeed inferencing

View File

@ -175,40 +175,47 @@ class TTS():
mirostat_eta=0.1,
out_path=None
):
if out_path is None:
out_path = f"./data/{cfg.start_time}.wav"
lines = text.split("\n")
prom = self.encode_audio( references, trim_length=input_prompt_length )
phns = self.encode_text( text, language=language )
lang = self.encode_lang( language )
wavs = []
sr = None
prom = to_device(prom, self.device).to(torch.int16)
phns = to_device(phns, self.device).to(torch.uint8 if len(self.symmap) < 256 else torch.int16)
lang = to_device(lang, self.device).to(torch.uint8)
for line in lines:
if out_path is None:
out_path = f"./data/{cfg.start_time}.wav"
with torch.autocast("cuda", dtype=self.dtype, enabled=self.amp):
resps_list = self.ar(
text_list=[phns], proms_list=[prom], lang_list=[lang], max_steps=max_ar_steps, max_resp_context=max_ar_context,
sampling_temperature=ar_temp,
sampling_min_temperature=min_ar_temp,
sampling_top_p=top_p, sampling_top_k=top_k,
sampling_repetition_penalty=repetition_penalty, sampling_repetition_penalty_decay=repetition_penalty_decay,
sampling_length_penalty=length_penalty,
sampling_beam_width=beam_width,
sampling_mirostat_tau=mirostat_tau,
sampling_mirostat_eta=mirostat_eta,
)
resps_list = [r.unsqueeze(-1) for r in resps_list]
resps_list = self.nar(
text_list=[phns], proms_list=[prom], lang_list=[lang], resps_list=resps_list,
max_levels=max_nar_levels,
sampling_temperature=nar_temp,
sampling_min_temperature=min_nar_temp,
sampling_top_p=top_p, sampling_top_k=top_k,
sampling_repetition_penalty=repetition_penalty, sampling_repetition_penalty_decay=repetition_penalty_decay,
)
prom = self.encode_audio( references, trim_length=input_prompt_length )
phns = self.encode_text( line, language=language )
lang = self.encode_lang( language )
wav, sr = qnt.decode_to_file(resps_list[0], out_path, device=self.device)
prom = to_device(prom, self.device).to(torch.int16)
phns = to_device(phns, self.device).to(torch.uint8 if len(self.symmap) < 256 else torch.int16)
lang = to_device(lang, self.device).to(torch.uint8)
with torch.autocast("cuda", dtype=self.dtype, enabled=self.amp):
resps_list = self.ar(
text_list=[phns], proms_list=[prom], lang_list=[lang], max_steps=max_ar_steps, max_resp_context=max_ar_context,
sampling_temperature=ar_temp,
sampling_min_temperature=min_ar_temp,
sampling_top_p=top_p, sampling_top_k=top_k,
sampling_repetition_penalty=repetition_penalty, sampling_repetition_penalty_decay=repetition_penalty_decay,
sampling_length_penalty=length_penalty,
sampling_beam_width=beam_width,
sampling_mirostat_tau=mirostat_tau,
sampling_mirostat_eta=mirostat_eta,
)
resps_list = [r.unsqueeze(-1) for r in resps_list]
resps_list = self.nar(
text_list=[phns], proms_list=[prom], lang_list=[lang], resps_list=resps_list,
max_levels=max_nar_levels,
sampling_temperature=nar_temp,
sampling_min_temperature=min_nar_temp,
sampling_top_p=top_p, sampling_top_k=top_k,
sampling_repetition_penalty=repetition_penalty, sampling_repetition_penalty_decay=repetition_penalty_decay,
)
wav, sr = qnt.decode_to_file(resps_list[0], out_path, device=self.device)
wavs.append(wav)
return (wav, sr)
return (torch.concat(wavs, dim=-1), sr)

View File

@ -327,7 +327,6 @@ def example_usage():
proms_list = proms_list[:1]
resps_list = resps_list[:1]
"""
kwargs = {
'n_tokens': 1024,
'd_model': 1024, # 256, # 1024, # 1536
@ -343,6 +342,7 @@ def example_usage():
'n_layers': 12,
'n_experts': 8,
}
"""
"""
try:

View File

@ -308,7 +308,7 @@ class Base(nn.Module):
num_experts_per_tok=min(2, n_experts),
))
elif self.arch_type == "retnet":
self.model = RetNetDecoder(RetNetConfig(
kwargs = dict(
vocab_size=n_resp_tokens,
decoder_embed_dim=d_model,
decoder_value_embed_dim =d_model * 2,
@ -328,13 +328,17 @@ class Base(nn.Module):
decoder_normalize_before=True,
rotary_embedding_base=self.rotary_embedding_base, # 10000
)
# MoE
use_xmoe=n_experts>1,
moe_freq=1,
moe_expert_count=n_experts,
moe_gating_use_fp32=False,
))
if n_experts > 1:
kwargs.update(dict(
use_xmoe=True,
moe_freq=1,
moe_expert_count=n_experts,
moe_gating_use_fp32=False,
))
self.model = RetNetDecoder(RetNetConfig(**kwargs))
self.classifier = nn.Linear(d_model, n_resp_tokens)
@ -422,7 +426,7 @@ class Base(nn.Module):
elif self.arch_type == "retnet":
# pass our inputs through the RetNet
x, _ = self.model(x, incremental_state=state, token_embeddings=x, features_only=True)
if _ is not None and "l_aux" in _:
if _ is not None and "l_aux" in _ and self.n_experts > 1:
aux_loss = torch.sum(torch.stack([ t for t in _["l_aux"] if t is not None])) * 0.001
# output projection layer with masking
x = self.classifier(x) * m