big cleanup

This commit is contained in:
mrq 2023-08-03 20:26:36 -05:00
parent 2e03e5ac93
commit c85101403f
13 changed files with 1037 additions and 1031 deletions

View File

@ -15,12 +15,12 @@ dataset:
workers: 8
cache: True
phones_range: [4, 256]
duration_range: [1.0, 12.0]
phones_range: [4, 512]
duration_range: [1.0, 24.0]
random_utterance: 1.0
max_prompts: 3
prompt_duration: 3.0
max_prompts: 6
prompt_duration: 6.0
models:
_models:
@ -69,7 +69,8 @@ evaluation:
size: 32
steps: 300
temperature: 1.0
ar_temperature: 1.0
nar_temperature: 0.2
trainer:
iterations: 100_000
@ -91,7 +92,13 @@ trainer:
weight_dtype: bfloat16
zero_optimization_level: 2
use_compression_training: True
backend: deepspeed
deepspeed:
zero_optimization_level: 0
use_compression_training: True
use_vocos: False
inference:
use_vocos: True
bitsandbytes:
enabled: false

View File

@ -232,7 +232,121 @@ class Evaluation:
size: int = 64
steps: int = 500
temperature: float = 1.0
ar_temperature: float = 1.0
nar_temperature: float = 0.2
@dataclass()
class DeepSpeed:
zero_optimization_level: int = 0
use_compression_training: bool = False
def get_ds_cfg(self, model):
weights = [ name[0] for name in model.named_parameters() ]
bits = 8
scheduler_params = {}
for k in cfg.hyperparameters.scheduler_params:
scheduler_params[k] = cfg.hyperparameters.scheduler_params[k]
if cfg.hyperparameters.scheduler_type == "WarmupDecayLR" and 'total_num_steps' not in scheduler_params:
scheduler_params['total_num_steps'] = cfg.trainer.iterations
ds_cfg = {
"train_micro_batch_size_per_gpu": cfg.hyperparameters.batch_size,
"gradient_accumulation_steps": cfg.hyperparameters.gradient_accumulation_steps,
"optimizer": {
"type": cfg.hyperparameters.optimizer,
"params": {
"lr": cfg.hyperparameters.learning_rate,
}
},
"scheduler": {
"type": cfg.hyperparameters.scheduler_type,
"params": scheduler_params,
} if cfg.hyperparameters.scheduler_type != "" else None,
"gradient_clipping": cfg.hyperparameters.gradient_clipping,
"fp16": {
"enabled": True,
"auto_cast": True,
} if cfg.trainer.weight_dtype.lower() == "float16" else None,
"bf16": {
"enabled": cfg.trainer.weight_dtype.lower() == "bfloat16"
},
"compression_training": {
"weight_quantization": {
"shared_parameters":{
"enabled": True,
"quantizer_kernel": True,
"schedule_offset": 0,
"quantize_groups": 64,
"quantize_verbose": True,
"quantization_type": "symmetric",
"rounding": "nearest",
"quantize_weight_in_forward": True,
"fp16_mixed_quantize":{
"enabled": False,
"quantize_change_ratio": 1
}
},
"different_groups": {
"wq1": {
"params": {
"start_bits": bits,
"target_bits": bits,
"quantization_period": 0
},
"modules": weights
}
}
},
"activation_quantization": {
"shared_parameters":{
"enabled": True,
"quantization_type": "symmetric",
"range_calibration": "dynamic",
"schedule_offset": 0
},
"different_groups": {
"aq1": {
"params": {
"bits": bits
},
"modules": weights
}
}
}
} if self.use_compression_training else None,
"zero_optimization": {
"stage": self.zero_optimization_level,
"contiguous_gradients": True,
"overlap_comm": True,
"reduce_scatter": True,
"reduce_bucket_size": 5e8,
"allgather_bucket_size": 5e8,
"sub_group_size": 5e8,
"round_robin_gradients": True,
"offload_optimizer": {
"device": "cpu",
"pin_memory": True
},
"offload_param": {
"device": "cpu",
"pin_memory": True
}
} if self.zero_optimization_level > 0 else None,
"comms_logger": {
"enabled": False
}
}
null_keys = [ k for k in ds_cfg if not ds_cfg[k] ]
for k in null_keys:
del ds_cfg[k]
if os.path.exists("./config/ds_config.json"):
ds_cfg.update(json.load(open("./config/ds_config.json", "r", encoding="utf-8")))
return ds_cfg
@dataclass()
class Trainer:
@ -256,8 +370,9 @@ class Trainer:
weight_dtype: str = "float16"
zero_optimization_level: int = 0
use_compression_training: bool = False
backend: str = "deepspeed"
deepspeed: DeepSpeed = field(default_factory=lambda: DeepSpeed)
@dataclass()
@ -284,7 +399,6 @@ class Config(_Config):
inference: Inference = field(default_factory=lambda: Inference)
bitsandbytes: BitsAndBytes = field(default_factory=lambda: BitsAndBytes)
@property
def sample_rate(self):
return 24_000
@ -293,142 +407,6 @@ class Config(_Config):
def get_spkr(self):
return eval(self.dataset.speaker_name_getter)
@property
def scheduler(self):
cfg = {
"type": self.hyperparameters.scheduler_type,
"params": {},
}
for k in self.hyperparameters.scheduler_params:
cfg['params'][k] = self.hyperparameters.scheduler_params[k]
if self.hyperparameters.scheduler_type == "WarmupDecayLR" and 'total_num_steps' not in cfg['params']:
cfg['params']['total_num_steps'] = self.trainer.iterations
return cfg
@property
def fp16_cfg(self):
if self.trainer.weight_dtype.lower() != "float16":
return None
return {
"enabled": True,
"auto_cast": True,
}
@property
def bf16_cfg(self):
return {
"enabled": self.trainer.weight_dtype.lower() == "bfloat16"
}
def get_compression_cfg(self, model):
if not self.trainer.use_compression_training:
return None
weights = [ name[0] for name in model.named_parameters() ]
bits = 8
return {
"weight_quantization": {
"shared_parameters":{
"enabled": True,
"quantizer_kernel": True,
"schedule_offset": 0,
"quantize_groups": 64,
"quantize_verbose": True,
"quantization_type": "symmetric",
"rounding": "nearest",
"quantize_weight_in_forward": True,
"fp16_mixed_quantize":{
"enabled": False,
"quantize_change_ratio": 1
}
},
"different_groups": {
"wq1": {
"params": {
"start_bits": bits,
"target_bits": bits,
"quantization_period": 0
},
"modules": weights
}
}
},
"activation_quantization": {
"shared_parameters":{
"enabled": True,
"quantization_type": "symmetric",
"range_calibration": "dynamic",
"schedule_offset": 0
},
"different_groups": {
"aq1": {
"params": {
"bits": bits
},
"modules": weights
}
}
}
}
@property
def zero_cfg(self):
if self.trainer.zero_optimization_level == 0:
return None
return {
"stage": self.trainer.zero_optimization_level,
"contiguous_gradients": True,
"overlap_comm": True,
"reduce_scatter": True,
"reduce_bucket_size": 5e8,
"allgather_bucket_size": 5e8,
"sub_group_size": 5e8,
"round_robin_gradients": True,
"offload_optimizer": {
"device": "cpu",
"pin_memory": True
},
"offload_param": {
"device": "cpu",
"pin_memory": True
}
}
def get_ds_cfg(self, model):
cfg = {
"train_micro_batch_size_per_gpu": self.hyperparameters.batch_size,
"gradient_accumulation_steps": self.hyperparameters.gradient_accumulation_steps,
"optimizer": {
"type": self.hyperparameters.optimizer,
"params": {
"lr": self.hyperparameters.learning_rate,
}
},
"scheduler": self.hyperparameters.scheduler if self.hyperparameters.scheduler_type != "" else None,
"gradient_clipping": self.hyperparameters.gradient_clipping,
"fp16": self.fp16_cfg,
"bf16": self.bf16_cfg,
"compression_training": self.get_compression_cfg(model),
"zero_optimization": self.zero_cfg,
"comms_logger": {
"enabled": False
}
}
null_keys = [ k for k in cfg if not cfg[k] ]
for k in null_keys:
del cfg[k]
if os.path.exists("./config/ds_config.json"):
ds_cfg = json.load(open("./config/ds_config.json", "r", encoding="utf-8"))
cfg.update(ds_cfg)
return cfg
@property
def cache_dir(self):
return ".cache" / self.relpath
@ -455,6 +433,8 @@ cfg.trainer = Trainer(**cfg.trainer)
cfg.inference = Inference(**cfg.inference)
cfg.bitsandbytes = BitsAndBytes(**cfg.bitsandbytes)
cfg.trainer.deepspeed = DeepSpeed(**cfg.trainer.deepspeed)
# cached_property stopped working...
if cfg.dataset.use_hdf5:
try:

View File

@ -0,0 +1,9 @@
from ..config import cfg
if cfg.trainer.backend == "deepspeed":
from .deepspeed import Engine
elif cfg.trainer.backend == "local":
from .base import Engine
from .base import Engines
from .base import TrainFeeder

374
vall_e/engines/base.py Normal file
View File

@ -0,0 +1,374 @@
from torch import Tensor
from typing import Any, Protocol
Stats = dict[str, float]
class TrainFeeder(Protocol):
def __call__(
self, *, engine: "Engine", batch: Any
) -> None | tuple[Tensor, Stats]:
...
def default_feed(engine, batch):
if isinstance(batch, list):
engine( *batch )
elif isinstance(batch, dict):
engine( **batch )
else:
engine( batch )
losses = engine.gather_attribute("loss")
loss = torch.stack([*losses.values()]).sum()
stats = {}
stats |= {k: v.item() for k, v in losses.items()}
return loss, stats
from ..config import cfg
from ..utils import dispatch_attribute, flatten_dict, gather_attribute, do_gc, to_device
import logging
import time
import torch
import torch.distributed
import os
from torch import Tensor
from torch.distributed import all_reduce
from typing import Any, Protocol
from .base import TrainFeeder
_logger = logging.getLogger(__name__)
# A very naive engine implementation using barebones PyTorch
class Engine():
def __init__(self, *args, **kwargs):
self.module = kwargs['model']
self.optimizer = kwargs['optimizer'] if 'optimizer' in kwargs else None
self.lr_scheduler = kwargs['lr_scheduler'] if 'lr_scheduler' in kwargs else None
self.global_steps = 0
self.micro_steps = 0
self.gradient_accumulation_steps = cfg.hyperparameters.gradient_accumulation_steps
def freeze(self):
for p in self.module.parameters():
if p.requires_grad:
p.requires_grad_(False)
self._frozen_params.add(p)
def unfreeze(self):
for p in self._frozen_params:
p.requires_grad_(True)
self._frozen_params.clear()
@property
def global_step(self):
return self.global_steps
@property
def micro_step(self):
return self.micro_steps
def train_batch_size(self):
return cfg.hyperparameters.batch_size
def gather_attribute(self, *args, **kwargs):
return gather_attribute(self.module, *args, **kwargs)
def dispatch_attribute(self, *args, **kwargs):
return dispatch_attribute(self.module, *args, **kwargs)
def save_checkpoint(self, save_dir, tag ):
torch.save({
"global_step": self.global_step,
"micro_step": self.micro_step,
"module": self.module.state_dict(),
"optimizer": self.optimizer.state_dict() if self.optimizer is not None else None,
"lr_scheduler": self.lr_scheduler.state_dict() if self.lr_scheduler is not None else None,
}, save_dir / tag / "state.pth")
def load_checkpoint(self, load_dir, tag, load_module_strict=True, load_optimizer_states=True, load_lr_scheduler_states=True):
state = torch.load(load_dir / tag / "state.pth")
self.global_step = state['global_step']
self.micro_step = state['micro_step']
self.module.load_state_dict(state['module'])
load_optimizer_states = load_optimizer_states and self.optimizer is not None and 'optimizer' in state
load_lr_scheduler_states = load_lr_scheduler_states and self.lr_scheduler is not None and 'lr_scheduler' in state
if load_optimizer_states:
self.optimizer.load_state_dict(state['optimizer'])
if load_lr_scheduler_states:
self.lr_scheduler.load_state_dict(state['lr_scheduler'])
def eval(self):
return self.module.eval()
def train(self):
return self.module.train()
def to(self, *args, **kwargs):
self.module = self.module.to(*args, **kwargs)
return self.module
def __call__(self, *args, **kwargs):
return self.forward(*args, **kwargs)
def forward(self, *args, **kwargs):
return self.module.forward(*args, **kwargs)
def backward(self, loss):
return (loss / self.gradient_accumulation_steps).backward()
def step(self):
with torch.set_grad_enabled(self.gradient_accumulation_steps > 1):
self.micro_steps += 1
if (self.micro_steps + 1) % max(1, self.gradient_accumulation_steps) == 0:
self.global_steps += 1
self.optimizer.step()
self.optimizer.zero_grad()
def get_lr(self):
lrs = []
for param_group in self.optimizer.param_groups:
if 'lr' in param_group:
lrs.append(param_group['lr'])
return lrs
def set_lr(self, lr):
for param_group in self.optimizer.param_groups:
if 'lr' in param_group:
param_group['lr'] = lr
def get_global_grad_norm(self):
return 0.0
def traverse(self, *args, **kwargs):
self.forward(*args, **kwargs)
losses = self.gather_attribute("loss")
loss = torch.stack([*losses.values()]).sum()
stats = {}
stats |= {k: v.item() for k, v in losses.items()}
stats |= self.gather_attribute("scalar")
self.backward(loss)
self.step()
return stats
# and now to ignore everything from the above
class Engines(dict[str, Engine]):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.setup()
def setup(self):
self._global_step = 0
self._micro_step = 0
@property
def global_step(self):
return self._global_step
@property
def micro_step(self):
return self._micro_step
def gather_attribute(self, *args, **kwargs):
ret = {}
for engine in self.values():
ret |= engine.gather_attribute(*args, **kwargs)
return ret
def dispatch_attribute(self, *args, **kwargs):
for engine in self.values():
engine.dispatch_attribute(*args, **kwargs)
def save_checkpoint(self, tag=None):
if not tag:
tag = cfg.trainer.save_tag
tag = tag.lower()
if tag[:2] == "it" or tag[:4] == "step":
tag = f'{self.global_step}'
cfg.ckpt_dir.mkdir(parents=True, exist_ok=True)
for name, engine in self.items():
engine.save_checkpoint(cfg.ckpt_dir / name, tag=tag)
def load_checkpoint(self, tag=None):
if not tag:
tag = cfg.trainer.load_tag
for name, engine in self.items():
load_dir = cfg.ckpt_dir / name
engine.load_checkpoint(
tag=tag,
load_dir=load_dir,
load_module_strict=cfg.trainer.strict_loading,
load_optimizer_states=cfg.trainer.load_states,
load_lr_scheduler_states=cfg.trainer.load_states,
)
if cfg.trainer.restart_step_count:
engine.global_steps = 0
# update the LR because for some god awful reason it gets overwritten when loading from a checkpoint but only when it's not using a scheduler
if cfg.hyperparameters.scheduler_type == "":
self.set_lr(cfg.hyperparameters.learning_rate)
self._update_global_step()
self._update_micro_step()
def set_lr(self, lr):
for engine in self.values():
engine.set_lr(lr)
def _update_global_step(self):
for engine in self.values():
self._global_step = max(self._global_step, engine.global_step)
def _update_micro_step(self):
for engine in self.values():
self._micro_step = max(self._micro_step, engine.micro_step)
def train_batch_size(self):
batch_size = 0
for engine in self.values():
batch_size = max(batch_size, engine.train_batch_size())
def eval(self):
for engine in self.values():
engine.eval()
def train(self):
for engine in self.values():
engine.train()
def traverse(self):
stats = {}
for name, engine in self.items():
stat = engine.traverse()
stats.update(flatten_dict({ name.split("-")[0]: stat }))
return stats
def step(self, batch, feeder: TrainFeeder = default_feed, device=torch.cuda.current_device()):
total_elapsed_time = 0
stats: Any = dict()
if cfg.trainer.gc_mode == 'step':
do_gc()
batch = to_device(batch, device)
for name, engine in self.items():
#torch.cuda.synchronize()
if cfg.trainer.gc_mode == 'substep':
do_gc()
start_time = time.time()
tries = 4
n_ooms = torch.zeros([], device=cfg.device)
if cfg.trainer.aggressive_optimizations:
batch = to_device(batch, device)
res = feeder( engine=engine, batch=batch )
"""
while tries >= 0:
try:
res = feeder( engine=engine, batch=batch )
break
except RuntimeError as e:
print("Forward", str(e))
if "out of memory" not in str(e):
self.save_checkpoint()
raise e
# shrink batch size until it's happy
for k in batch:
batch[k] = batch[k][:-1]
if tries <= 0:
# trigger OOM
n_ooms += 1
else:
# also do GC
do_gc()
continue
all_reduce(n_ooms)
if n_ooms.item() > 0:
self.save_checkpoint()
raise RuntimeError("Out of memory during forward pass!")
"""
if res is None:
continue
loss, engine_stats = res
engine_stats |= self.gather_attribute("scalar")
n_ooms = torch.zeros([], device=cfg.device)
if cfg.trainer.aggressive_optimizations:
batch = to_device(batch, 'cpu')
engine.backward(loss)
"""
try:
engine.backward(loss)
except RuntimeError as e:
print("Backwards:", str(e))
if "out of memory" not in str(e):
self.save_checkpoint()
raise e
n_ooms += 1
all_reduce(n_ooms)
if n_ooms.item() > 0:
self.save_checkpoint()
raise RuntimeError("Out of memory during backwards pass!")
"""
engine.step()
#torch.cuda.synchronize()
elapsed_time = time.time() - start_time
total_elapsed_time += elapsed_time
stats.update(
flatten_dict(
{
name.split("-")[0]: dict(
loss=loss.item(),
lr=engine.get_lr()[0],
grad_norm=engine.get_global_grad_norm(), # This norm is delayed but global and avoids extra computation
elapsed_time=elapsed_time,
engine_step=engine.global_step,
**engine_stats,
)
}
),
)
self._update_global_step()
self._update_micro_step()
stats["batch_size"] = self.train_batch_size() # len(batch["text"])
stats["elapsed_time"] = total_elapsed_time
stats["wall_time"] = time.time()
stats["global_step"] = self.global_step
return stats

View File

@ -0,0 +1,89 @@
"""
# https://github.com/enhuiz/pytorch-training-utilities
"""
# to-do: replace this
# to-do: swap out deepspeed
from ..config import cfg
from ..utils import dispatch_attribute, flatten_dict, gather_attribute, do_gc, to_device
import logging
import time
import torch
import torch.distributed
from torch import Tensor
from torch.distributed import all_reduce
from typing import Any, Protocol
from .base import TrainFeeder
_logger = logging.getLogger(__name__)
from deepspeed import DeepSpeedEngine, DeepSpeedConfig, comm as dist, init_distributed
from deepspeed.accelerator import get_accelerator
#dist.init_distributed(dist_backend=get_accelerator().communication_backend_name())
initialized_dist = False
if not initialized_dist:
initialized_dist = True
init_distributed()
class Engine(DeepSpeedEngine):
def __init__(self, *args, **kwargs):
kwargs['config'] = cfg.trainer.deepspeed.get_ds_cfg(model=kwargs['model'])
kwargs['config_class'] = DeepSpeedConfig(kwargs['config'])
super().__init__(None, *args, **kwargs)
self._frozen_params = set()
def freeze(self):
for p in self.module.parameters():
if p.requires_grad:
p.requires_grad_(False)
self._frozen_params.add(p)
def unfreeze(self):
for p in self._frozen_params:
p.requires_grad_(True)
self._frozen_params.clear()
@property
def global_step(self):
return self.global_steps
@property
def micro_step(self):
return self.micro_steps
def gather_attribute(self, *args, **kwargs):
return gather_attribute(self.module, *args, **kwargs)
def dispatch_attribute(self, *args, **kwargs):
return dispatch_attribute(self.module, *args, **kwargs)
def set_lr(self, lr):
try:
if hasattr(self.optimizer, 'param_groups'):
print(self.optimizer.param_groups)
for param_group in self.optimizer.param_groups:
param_group['lr'] = lr
else:
self.optimizer.set_lr(lr)
except Exception as e:
print(str(e))
def traverse(self, *args, **kwargs):
self.forward(*args, **kwargs)
losses = self.gather_attribute("loss")
loss = torch.stack([*losses.values()]).sum()
stats = {}
stats |= {k: v.item() for k, v in losses.items()}
stats |= self.gather_attribute("scalar")
self.backward(loss)
self.step()
return stats

View File

@ -72,8 +72,8 @@ class TTS():
prom = to_device(prom, self.device).to(torch.int16)
phns = to_device(phns, self.device).to(torch.uint8 if len(self.symmap) < 256 else torch.int16)
resp_list = self.ar(text_list=[phns], proms_list=[prom], max_steps=max_ar_steps, sampling_temperature=ar_temp)
resps_list = [r.unsqueeze(-1) for r in resp_list]
resps_list = self.ar(text_list=[phns], proms_list=[prom], max_steps=max_ar_steps, sampling_temperature=ar_temp)
resps_list = [r.unsqueeze(-1) for r in resps_list]
resps_list = self.nar(text_list=[phns], proms_list=[prom], resps_list=resps_list, sampling_temperature=nar_temp)
wav, sr = qnt.decode_to_file(resps_list[0], out_path)

View File

@ -1,20 +1,22 @@
from .ar import AR
from .nar import NAR
def get_model(model):
if model.name == "ar":
def get_model(cfg):
if cfg.name == "ar":
Model = AR
elif model.name == "nar":
elif cfg.name == "nar":
Model = NAR
else:
raise f"invalid model name: {model.name}"
name = model.name
raise f"invalid model name: {cfg.name}"
name = cfg.name
model = Model(
n_tokens=model.tokens,
d_model=model.dim,
n_heads=model.heads,
n_layers=model.layers,
)
model._cfg = cfg
print(f"{name} parameter count: {sum(p.numel() for p in model.parameters() if p.requires_grad)}")

View File

@ -50,112 +50,80 @@ class AR(Base):
self,
text_list: list[Tensor],
proms_list: list[Tensor],
resp_list: list[Tensor] | None = None,
resps_list: list[Tensor] | None = None,
max_steps: int = 1000,
sampling_temperature: float = 1.0,
naive: bool = True,
):
if resp_list is not None:
if resps_list is not None:
resps_list = [r[..., 0] for r in resps_list] # guarantees we only have the first levels
return super().forward(
text_list,
proms_list,
self._unsqueeze_list(resp_list),
resp_list,
text_list=text_list,
proms_list=proms_list,
resps_list=self._unsqueeze_list(resps_list),
targ_list=resps_list,
quant_levels=None,
shift_targ_list=True,
return_all_resp=False,
)
device = text_list[0].device
resp_list: list[Tensor] = [
resps_list: list[Tensor] = [
torch.zeros(0, device=device).to(torch.int16) for _ in text_list
]
stopped = torch.zeros(len(text_list), device=device).bool()
if self.arch_type == "transformer":
naive = True
chunk_size = 1 # don't really know what to do about this desu
state = None
start = 0
# prefill
if self.arch_type == "retnet/local":
# pre-process
state = [
[
torch.zeros(self.retnet.hidden_dim // self.retnet.heads, self.retnet.v_dim // self.retnet.heads, device=device).unsqueeze(0).repeat(len(text_list), 1, 1)
for _ in range(self.retnet.heads)
] for _ in range(self.retnet.layers)
]
resps_list = self._unsqueeze_list(resp_list)
x_list = self._samplewise_merge_tensors(
self.text_emb(text_list),
self.proms_emb(proms_list),
self.resps_emb(resps_list),
sep=self.sep,
)
x, m = list_to_tensor(x_list)
start = x.shape[1]
for i in trange(start-1):
_, state = self.retnet.forward_recurrent( x[:, i:i+1, :], state, i+1 )
for n in trange(max_steps // chunk_size):
# get next in sequence
r, state = super().forward(
text_list,
proms_list,
self._unsqueeze_list(resp_list),
self._unsqueeze_list(resps_list),
sampling_temperature=sampling_temperature,
state=state,
state=state if not naive else None,
)
# append outputted token
for i, ri in enumerate(r):
resp_list[i] = torch.cat([resp_list[i], ri[None]])
resps_list[i] = torch.cat([resps_list[i], ri[None]])
# stop token found
stopped |= r == self.stop_token
if stopped.all().item():
break
pruned = [self._prune(r) for r in resp_list]
pruned = [self._prune(r) for r in resps_list]
return pruned
def example_usage():
cfg.trainer.backend = "local"
from functools import partial
from einops import repeat
from ..emb.qnt import decode_to_file
from ..utils import gather_attribute
from ..engines import Engine
from tqdm import tqdm
device = "cpu"
x8 = partial(repeat, pattern="t -> t l", l=2)
symmap = {'<s>': 1, '</s>': 2, ' ': 3, '.': 4, ',': 5, '!': 6, '?': 7, 'p': 7, 'iː': 8, 'ɚ': 9, 'ˌ': 10, '': 11, '': 12, 'd': 13, 'ɹ': 14, 'tˈ': 15, '': 16, 'uː': 17, 'l': 18, 'æ': 19, 'ɛ': 20, 'ɪ': 21, 'j': 22, 'ʊ': 23, 't': 24, 'n': 25, 'v': 26, 'a': 27, 'o': 28, 'ŋ': 29, 'w': 30, 'ʌ': 31, 'hˈ': 32, 'ɡˈ': 33, 'ə': 34, 'θˈ': 35, 'dˈ': 36, '': 37, 'h': 38, 'z': 39, 'k': 40, 'ð': 41, 'ɡˌ': 42, 'ˈ': 43, 'fˈ': 44, 'i': 45, 's': 46, 'ʃ': 47, 'wˈ': 48, 'ðˈ': 49, 'ɹˈ': 50, 'lˈ': 51, 'ɡ': 52, 'oː': 53, 'mˈ': 54, 'e': 55, 'ɑː': 56, 'nˈ': 57, 'm': 58, 'θˌ': 59, 'sˈ': 60, 'f': 61, 'ɔː': 62, '': 63, 'b': 64, 'jˈ': 65, 'ɐ': 66, 'ʒˈ': 67, 'θ': 68, 'bˈ': 69, 'ɾ': 70, 'ɜː': 71, 'ʌˈ': 72, 'ʃˌ': 73, '': 74, 'kˈ': 75, 'ɔ': 76, 'zˈ': 77, '': 78, '': 79, 'vˈ': 80, '': 81, 'ʒ': 82, 'ʃˈ': 83, 'ɹˌ': 84, '': 85, 'pˈ': 86, 'ðˌ': 87, '': 88, '': 89, '': 90, '̩': 91, 'ʔ': 92, '': 93, 'ɪˈ': 94, '"': 95, 'ɪˌ': 96, 'ʒˌ': 97, 'uːˌ': 98, 'ʊˈ': 99, '': 100, 'uːˈ': 101, 'iːˈ': 102, '': 103, '.ˈ': 104, '': 105, 'ŋˌ': 106, 'ɐˌ': 107, '—ˈ': 108, '': 109, 'iːˌ': 110, 'ɛː': 111, ')': 112, ')ˈ': 113, '(': 114, 'u': 115, '-': 116, 'ɖˈ': 117, 'iˈ': 118, 'ʰˈ': 119, 'ɟˈ': 120, '̃': 121, 'eː': 122, 'ɾˈ': 123, 'r': 124, 'ʰ': 125, '': 126, 'ɫ': 127, 'q': 128, '': 129, 'ʊˌ': 130, 'aː': 131, 'cˈ': 132, '…ˈ': 133, 'c': 134, 'ɳ': 135, 'ɐˈ': 136, 'x': 137, 'ʔˌ': 138, '': 139, 'ɑ': 140, '?ˈ': 141, '̩ˈ': 142, '"ˈ': 143, ',ˈ': 144, 'ŋˈ': 145, 'əˌ': 146, '!ˈ': 147, '"ˌ': 148, '': 149, '': 150, '—ˌ': 151, '̩ˌ': 152, 'əˈ': 153, '': 154, 'ɬ': 155, 'ʲ': 156, '¡': 157, 'ɯ': 158, '': 159, 'ʑ': 160, 'ʑˈ': 161, '¿': 162, 'ɑːˈ': 163, 'iːː': 164, 'ɛˈ': 165, '¡ˈ': 166, 'æˈ': 167, 'ç': 168, 'ɾˌ': 169, 'ᵻˈ': 170, 'xˈ': 171, 'ɔːˈ': 172, ';': 173, 'ɬˌ': 174, ':': 175, 'ʔˈ': 176, 'ɑːˌ': 177, 'ɬˈ': 178}
def tokenize(content, lang_marker="en"):
split = content.split(" ")
phones = [f"<s>"] + [ " " if not p else p for p in split ] + [f"</s>"]
return torch.tensor([*map(symmap.get, phones)]).to()
qnt = torch.load("data/qnt.pt")[0, 0].to(device)
kwargs = {
'n_tokens': 1024,
'd_model': 1024,
'n_heads': 16,
'n_layers': 12,
}
qnt = torch.load("data/qnt.pt")[0].t()[:, :2].to(device)
model = AR(**kwargs).to(device)
x8 = partial(repeat, pattern="t -> t l", l=2)
text_list = [
#torch.tensor([1, 2, 3], device=device),
tokenize("ˈ a ɪ w ɪ l nˌ ɑː t ˈ æ s k ɐ sˈ ɛ k ə n d tˈ a ɪ m").to(device),
@ -164,41 +132,41 @@ def example_usage():
x8(torch.tensor([1, 2, 3], device=device)),
#qnt.to(device),
]
resp_list = [
resps_list = [
qnt.to(device),
]
text_list = text_list[:1]
proms_list = proms_list[:1]
resp_list = resp_list[:1]
resps_list = resps_list[:1]
model.eval()
out = model(text_list, proms_list, max_steps=75)[0]
print("qnt:", qnt.shape, qnt)
print("out:", out.shape, out)
wav, sr = decode_to_file(out, "data/test/test.ar.init.wav", device=device)
kwargs = {
'n_tokens': 1024,
'd_model': 1024,
'n_heads': 16,
'n_layers': 12,
}
model = AR(**kwargs).to(device)
engine = Engine(model=model, optimizer=torch.optim.AdamW(model.parameters(), lr=1e-4))
def sample( name, steps=400 ):
engine.eval()
out = engine(text_list, proms_list, max_steps=steps)
for i, o in enumerate(out):
wav, sr = decode_to_file(o, f"data/ar.{i}.{name}.wav", device=device)
optimizer = torch.optim.AdamW(model.parameters(), lr=1e-4)
def train():
engine.train()
t = trange(60)
for i in t:
stats = {"step": i}
stats |= engine.traverse(text_list=text_list, proms_list=proms_list, resps_list=resps_list)
model.train()
for i in trange(60):
optimizer.zero_grad()
_ = model(text_list, proms_list, resp_list)
losses = gather_attribute(model, "loss")
loss = sum(losses.values())
loss.backward()
optimizer.step()
if i % 20 == 0:
print(f"iter={i}, {losses}.")
model.eval()
out = model(text_list, proms_list, max_steps=400)
print("qnt:", qnt.shape, qnt)
for i, o in enumerate(out):
print("out:", i, o.shape, o)
wav, sr = decode_to_file(o, f"data/test/test.ar.{i}.wav", device=device)
t.set_description(f"{stats}")
sample("init", 75)
train()
sample("final")
if __name__ == "__main__":
example_usage()

View File

@ -176,17 +176,7 @@ class Base(nn.Module):
self.retnet = RetNetDecoder(
self.retnet_config
)
elif self.arch_type == "retnet/local":
self.retnet = RetNet(
layers=n_layers,
hidden_dim=d_model,
ffn_size=d_model * 4,
heads=n_heads,
dropout=p_dropout,
norm_type=self.norm_type,
n_levels=self.n_resp_levels,
double_v_dim=True
)
self.classifier = nn.Linear(d_model, n_resp_tokens)
self.accuracy_metric = MulticlassAccuracy(
@ -272,7 +262,7 @@ class Base(nn.Module):
text_list: [t] * b
proms_list: [t' l] * b, l quantization levels.
resps_list: [t'' l] * b, l quantization levels.
targ_list: [t''] * b, one quantization level only, when given, loss will be computed
targ_list: [t''] * b, one quantization level only; when given, loss will be computed
quant_levels: specify which quant_levels to feed forward, used in NAR mode.
shift_targ_list: whether to shift target list when computing loss. True if AR.
return_all_resp: True if NAR.
@ -298,24 +288,12 @@ class Base(nn.Module):
elif self.arch_type == "retnet":
x, _ = self.retnet(x, incremental_state=state, token_embeddings=x, features_only=True)
state = self.retnet.get_incremental_state( state, 'prev_state' )
elif self.arch_type == "retnet/local":
# recurrent inferencing
if self.causal and state is not None:
last = x.shape[1]
x, state = self.retnet.forward_recurrent(
x[:, last-1:last, :], # nasty way to grab the last embedding to forward
state,
last
)
else:
x = self.retnet( x, quant_levels )
x = self.classifier(x) * m
# Remove padding
h_list = [hi[:li] for hi, li in zip(x, map(len, x_list))]
# compute loss if the target is given
if targ_list is not None:
if any([l == 0 for l in map(len, targ_list)]):
@ -337,20 +315,24 @@ class Base(nn.Module):
# the NAR doesn't need to compute the loss for it
if self.resp_loss_only:
text_prom_list[i][:] = self.ignore_index
# roll the text/prompt for loss computing
# the AR benefits from this
# the AR benefits from this, for some reason I'll figure out later
else:
text_prom_list[i] = text_prom_list[i].roll(-1, dims=0)
text_prom_list[i][-1] = self.ignore_index
# necessary to roll the target if recurrently/causally/autoregressively generating, or it won't be able to work
# for the AR, roll by one and mark the ending with a stop token
# this coerces the model into properly inferencing causally
# why we don't just append a stop token in the dataloader, who knows
if shift_targ_list:
targ_list = [*targ_list]
for i in range(len(targ_list)):
targ_list[i] = targ_list[i].roll(-1, dims=0)
targ_list[i][-1] = self.stop_token
# generate the sequence
# create the new target sequence to compute the loss against
y_list = self._samplewise_merge_tensors( text_prom_list, targ_list, sep=ignore_sep )
self.loss = dict(
@ -367,6 +349,7 @@ class Base(nn.Module):
del prom_list
del text_prom_list
del y_list
# return the entire generated token string
if return_all:
@ -387,124 +370,90 @@ class Base(nn.Module):
return ret, state
def example_usage():
from ..config import cfg
cfg.trainer.backend = "local"
from functools import partial
from einops import repeat
from tqdm import trange
from ..utils import gather_attribute
from ..emb.qnt import decode_to_file
from ..engines import Engine, Engines
from tqdm import tqdm, trange
from .ar import AR
from .nar import NAR
device = "cpu"
x8 = partial(repeat, pattern="t -> t l", l=2)
symmap = {'<s>': 1, '</s>': 2, ' ': 3, '.': 4, ',': 5, '!': 6, '?': 7, 'p': 7, 'iː': 8, 'ɚ': 9, 'ˌ': 10, '': 11, '': 12, 'd': 13, 'ɹ': 14, 'tˈ': 15, '': 16, 'uː': 17, 'l': 18, 'æ': 19, 'ɛ': 20, 'ɪ': 21, 'j': 22, 'ʊ': 23, 't': 24, 'n': 25, 'v': 26, 'a': 27, 'o': 28, 'ŋ': 29, 'w': 30, 'ʌ': 31, 'hˈ': 32, 'ɡˈ': 33, 'ə': 34, 'θˈ': 35, 'dˈ': 36, '': 37, 'h': 38, 'z': 39, 'k': 40, 'ð': 41, 'ɡˌ': 42, 'ˈ': 43, 'fˈ': 44, 'i': 45, 's': 46, 'ʃ': 47, 'wˈ': 48, 'ðˈ': 49, 'ɹˈ': 50, 'lˈ': 51, 'ɡ': 52, 'oː': 53, 'mˈ': 54, 'e': 55, 'ɑː': 56, 'nˈ': 57, 'm': 58, 'θˌ': 59, 'sˈ': 60, 'f': 61, 'ɔː': 62, '': 63, 'b': 64, 'jˈ': 65, 'ɐ': 66, 'ʒˈ': 67, 'θ': 68, 'bˈ': 69, 'ɾ': 70, 'ɜː': 71, 'ʌˈ': 72, 'ʃˌ': 73, '': 74, 'kˈ': 75, 'ɔ': 76, 'zˈ': 77, '': 78, '': 79, 'vˈ': 80, '': 81, 'ʒ': 82, 'ʃˈ': 83, 'ɹˌ': 84, '': 85, 'pˈ': 86, 'ðˌ': 87, '': 88, '': 89, '': 90, '̩': 91, 'ʔ': 92, '': 93, 'ɪˈ': 94, '"': 95, 'ɪˌ': 96, 'ʒˌ': 97, 'uːˌ': 98, 'ʊˈ': 99, '': 100, 'uːˈ': 101, 'iːˈ': 102, '': 103, '.ˈ': 104, '': 105, 'ŋˌ': 106, 'ɐˌ': 107, '—ˈ': 108, '': 109, 'iːˌ': 110, 'ɛː': 111, ')': 112, ')ˈ': 113, '(': 114, 'u': 115, '-': 116, 'ɖˈ': 117, 'iˈ': 118, 'ʰˈ': 119, 'ɟˈ': 120, '̃': 121, 'eː': 122, 'ɾˈ': 123, 'r': 124, 'ʰ': 125, '': 126, 'ɫ': 127, 'q': 128, '': 129, 'ʊˌ': 130, 'aː': 131, 'cˈ': 132, '…ˈ': 133, 'c': 134, 'ɳ': 135, 'ɐˈ': 136, 'x': 137, 'ʔˌ': 138, '': 139, 'ɑ': 140, '?ˈ': 141, '̩ˈ': 142, '"ˈ': 143, ',ˈ': 144, 'ŋˈ': 145, 'əˌ': 146, '!ˈ': 147, '"ˌ': 148, '': 149, '': 150, '—ˌ': 151, '̩ˌ': 152, 'əˈ': 153, '': 154, 'ɬ': 155, 'ʲ': 156, '¡': 157, 'ɯ': 158, '': 159, 'ʑ': 160, 'ʑˈ': 161, '¿': 162, 'ɑːˈ': 163, 'iːː': 164, 'ɛˈ': 165, '¡ˈ': 166, 'æˈ': 167, 'ç': 168, 'ɾˌ': 169, 'ᵻˈ': 170, 'xˈ': 171, 'ɔːˈ': 172, ';': 173, 'ɬˌ': 174, ':': 175, 'ʔˈ': 176, 'ɑːˌ': 177, 'ɬˈ': 178}
def tokenize(content, lang_marker="en"):
split = content.split(" ")
phones = [f"<s>"] + [ " " if not p else p for p in split ] + [f"</s>"]
return torch.tensor([*map(symmap.get, phones)]).to()
device = "cpu"
kwargs = {
'n_tokens': 1024,
'd_model': 1024,
'n_heads': 16,
'n_layers': 12,
}
model_ar = AR(**kwargs).to(device)
model_nar = NAR(**kwargs).to(device)
models = { "ar": AR(**kwargs).to(device), "nar": NAR(**kwargs).to(device) }
engines = Engines({ name: Engine(model=model, optimizer=torch.optim.AdamW(model.parameters(), lr=1e-4)) for name, model in models.items() })
train = True
if train:
qnt = torch.load("data/qnt.pt").to(device)
text_list = [
tokenize("ˈ a ɪ w ɪ l nˌ ɑː t ˈ æ s k ɐ sˈ ɛ k ə n d tˈ a ɪ m").to(device),
#tokenize("ˌ ɔ n ɡˌ o ʊ ɪ ŋ hˈ o ʊ m ð ə tˈ uː f ɹˈ ɛ n d z fˈ a ʊ n d ɐ lˈ ɛ ɾ ɚ f ɹ ʌ m ˈ æ θ o ʊ z , hˌ uː d ɪ zˈ a ɪ ɚ d ðˌ ɛ m t ə mˈ iː t hˌ ɪ m æ t ð ə ɡ ɹˈ æ n d t ʃˈ ɑː ɹ l ɪ mˌ æ ɡ n i ɔ n ð ə fˈ ɑː l o ʊ ɪ ŋ dˈ e ɪ .").to(device),
]
x8 = partial(repeat, pattern="t -> t l", l=2)
proms_list = [
qnt[0][:2,:].t().to(device),
#x8(torch.tensor([1, 2, 3], device=device)),
# x8(torch.tensor([2, 3], device=device)),
]
qnt = torch.load("data/qnt.pt")[0].t()[:, :2].to(device)
text_list = [
tokenize("ˈ a ɪ w ɪ l nˌ ɑː t ˈ æ s k ɐ sˈ ɛ k ə n d tˈ a ɪ m").to(device),
#tokenize("ˌ ɔ n ɡˌ o ʊ ɪ ŋ hˈ o ʊ m ð ə tˈ uː f ɹˈ ɛ n d z fˈ a ʊ n d ɐ lˈ ɛ ɾ ɚ f ɹ ʌ m ˈ æ θ o ʊ z , hˌ uː d ɪ zˈ a ɪ ɚ d ðˌ ɛ m t ə mˈ iː t hˌ ɪ m æ t ð ə ɡ ɹˈ æ n d t ʃˈ ɑː ɹ l ɪ mˌ æ ɡ n i ɔ n ð ə fˈ ɑː l o ʊ ɪ ŋ dˈ e ɪ .").to(device),
]
resp_list_ar = [
qnt[0,0].to(device),
# qnt[0,0].to(device),
]
resp_list_nar = [
qnt[0][:2,:].t().to(device),
# qnt[0][:2,:].t().to(device),
]
model_ar.train()
optimizer = torch.optim.AdamW(model_ar.parameters(), lr=1e-4)
for i in trange(60):
optimizer.zero_grad()
_ = model_ar(text_list, proms_list, resp_list_ar)
losses = gather_attribute(model_ar, "loss")
loss = sum(losses.values())
loss.backward()
optimizer.step()
if i % 20 == 0:
print(f"iter={i}, {losses}.")
model_nar.train()
optimizer = torch.optim.AdamW(model_nar.parameters(), lr=1e-4)
for i in trange(60):
optimizer.zero_grad()
_ = model_nar(text_list, proms_list, resps_list=resp_list_nar)
losses = gather_attribute(model_nar, "loss")
loss = sum(losses.values())
loss.backward()
optimizer.step()
if i % 20 == 0:
stats = {k: v.item() for k, v in losses.items()}
stats["loss"] = loss.item()
print(f"iter={i}, {stats}.")
else:
qnt = torch.load("data/test/test.qnt.pt")[0][:2,:].t().to(device)
text_list = [
#tokenize("ˈ a ɪ w ɪ l nˌ ɑː t ˈ æ s k ɐ sˈ ɛ k ə n d tˈ a ɪ m").to(device),
tokenize("ˌ ɔ n ɡˌ o ʊ ɪ ŋ hˈ o ʊ m ð ə tˈ uː f ɹˈ ɛ n d z fˈ a ʊ n d ɐ lˈ ɛ ɾ ɚ f ɹ ʌ m ˈ æ θ o ʊ z , hˌ uː d ɪ zˈ a ɪ ɚ d ðˌ ɛ m t ə mˈ iː t hˌ ɪ m æ t ð ə ɡ ɹˈ æ n d t ʃˈ ɑː ɹ l ɪ mˌ æ ɡ n i ɔ n ð ə fˈ ɑː l o ʊ ɪ ŋ dˈ e ɪ .").to(device),
]
proms_list = [
qnt.to(device),
]
model_ar.load_state_dict(torch.load("data/test/ar.pth"))
model_nar.load_state_dict(torch.load("data/test/nar.pth"))
model_ar.eval()
resp_list = model_ar(text_list, proms_list, max_steps=300, sampling_temperature=1.0)
resps_list = [r.unsqueeze(-1) for r in resp_list]
proms_list = [
qnt.to(device),
]
resps_list = [
qnt.to(device),
]
print("qnt:", qnt.shape, qnt)
print("out:", resp_list[0].shape, resp_list[0])
wav, sr = decode_to_file(resp_list[0], "data/test/test.ar.init.wav", device=device)
print(wav, sr)
def sample( name, steps=400 ):
AR = None
NAR = None
model_nar.eval()
codes = model_nar(
text_list,
proms_list,
resps_list=resps_list,
sampling_temperature=1.0,
)[0]
engines.eval()
for name, engine in engines.items():
if name[:2] == "ar":
AR = engine
elif name[:3] == "nar":
NAR = engine
resps_list = AR(text_list, proms_list, max_steps=steps, sampling_temperature=1.0)
resps_list = [r.unsqueeze(-1) for r in resps_list]
codes = NAR( text_list, proms_list, resps_list=resps_list, sampling_temperature=0.2 )
print("qnt:", qnt.shape, qnt)
print("codes:", codes.shape, codes)
decode_to_file(resps_list[0], f"./data/ar.{name}.wav", device=device)
decode_to_file(codes[0], f"./data/ar+nar.{name}.wav", device=device)
if train:
sample("init", 15)
wav, sr = decode_to_file(codes, "data/test/test.ar+nar.init.wav", device=device)
print(wav, sr)
engines.train()
t = trange(60)
for i in t:
"""
stats = {"step": i}
for name, engine in engines.items():
stats |= engine.traverse(text_list=text_list, proms_list=proms_list, resps_list=resps_list)
"""
stats = engines.step({"text_list": text_list, "proms_list": proms_list, "resps_list": resps_list}, device="cpu")
t.set_description(f"{stats}")
else:
for name, engine in engines.items():
engine.module.load_state_dict(torch.load(f"./data/{name}.pth"))
sample("final")
if __name__ == "__main__":
example_usage()

View File

@ -80,7 +80,6 @@ class NAR(Base):
quant_levels=quant_levels,
)
# Yes, just nothing as we are training
prev_list = []
else:
prev_list = resps_list
@ -93,7 +92,7 @@ class NAR(Base):
quant_levels = torch.full((len(text_list),), level, device=device)
resp_list, _ = super().forward(
resps_list, _ = super().forward(
text_list,
proms_list,
prev_list,
@ -105,24 +104,22 @@ class NAR(Base):
prev_list = [
torch.cat([rs, r.unsqueeze(-1)], dim=-1)
for rs, r in zip(prev_list, resp_list)
for rs, r in zip(prev_list, resps_list)
]
return prev_list
def example_usage():
cfg.trainer.backend = "local"
from functools import partial
from pathlib import Path
from einops import repeat
from ..emb.qnt import decode_to_file
from ..utils import gather_attribute
from ..config import cfg
from ..engines import Engine
from tqdm import tqdm
device = "cpu"
x8 = partial(repeat, pattern="t -> t l", l=cfg.models.prom_levels)
symmap = {'<s>': 1, '</s>': 2, ' ': 3, '.': 4, ',': 5, '!': 6, '?': 7, 'p': 7, 'iː': 8, 'ɚ': 9, 'ˌ': 10, '': 11, '': 12, 'd': 13, 'ɹ': 14, 'tˈ': 15, '': 16, 'uː': 17, 'l': 18, 'æ': 19, 'ɛ': 20, 'ɪ': 21, 'j': 22, 'ʊ': 23, 't': 24, 'n': 25, 'v': 26, 'a': 27, 'o': 28, 'ŋ': 29, 'w': 30, 'ʌ': 31, 'hˈ': 32, 'ɡˈ': 33, 'ə': 34, 'θˈ': 35, 'dˈ': 36, '': 37, 'h': 38, 'z': 39, 'k': 40, 'ð': 41, 'ɡˌ': 42, 'ˈ': 43, 'fˈ': 44, 'i': 45, 's': 46, 'ʃ': 47, 'wˈ': 48, 'ðˈ': 49, 'ɹˈ': 50, 'lˈ': 51, 'ɡ': 52, 'oː': 53, 'mˈ': 54, 'e': 55, 'ɑː': 56, 'nˈ': 57, 'm': 58, 'θˌ': 59, 'sˈ': 60, 'f': 61, 'ɔː': 62, '': 63, 'b': 64, 'jˈ': 65, 'ɐ': 66, 'ʒˈ': 67, 'θ': 68, 'bˈ': 69, 'ɾ': 70, 'ɜː': 71, 'ʌˈ': 72, 'ʃˌ': 73, '': 74, 'kˈ': 75, 'ɔ': 76, 'zˈ': 77, '': 78, '': 79, 'vˈ': 80, '': 81, 'ʒ': 82, 'ʃˈ': 83, 'ɹˌ': 84, '': 85, 'pˈ': 86, 'ðˌ': 87, '': 88, '': 89, '': 90, '̩': 91, 'ʔ': 92, '': 93, 'ɪˈ': 94, '"': 95, 'ɪˌ': 96, 'ʒˌ': 97, 'uːˌ': 98, 'ʊˈ': 99, '': 100, 'uːˈ': 101, 'iːˈ': 102, '': 103, '.ˈ': 104, '': 105, 'ŋˌ': 106, 'ɐˌ': 107, '—ˈ': 108, '': 109, 'iːˌ': 110, 'ɛː': 111, ')': 112, ')ˈ': 113, '(': 114, 'u': 115, '-': 116, 'ɖˈ': 117, 'iˈ': 118, 'ʰˈ': 119, 'ɟˈ': 120, '̃': 121, 'eː': 122, 'ɾˈ': 123, 'r': 124, 'ʰ': 125, '': 126, 'ɫ': 127, 'q': 128, '': 129, 'ʊˌ': 130, 'aː': 131, 'cˈ': 132, '…ˈ': 133, 'c': 134, 'ɳ': 135, 'ɐˈ': 136, 'x': 137, 'ʔˌ': 138, '': 139, 'ɑ': 140, '?ˈ': 141, '̩ˈ': 142, '"ˈ': 143, ',ˈ': 144, 'ŋˈ': 145, 'əˌ': 146, '!ˈ': 147, '"ˌ': 148, '': 149, '': 150, '—ˌ': 151, '̩ˌ': 152, 'əˈ': 153, '': 154, 'ɬ': 155, 'ʲ': 156, '¡': 157, 'ɯ': 158, '': 159, 'ʑ': 160, 'ʑˈ': 161, '¿': 162, 'ɑːˈ': 163, 'iːː': 164, 'ɛˈ': 165, '¡ˈ': 166, 'æˈ': 167, 'ç': 168, 'ɾˌ': 169, 'ᵻˈ': 170, 'xˈ': 171, 'ɔːˈ': 172, ';': 173, 'ɬˌ': 174, ':': 175, 'ʔˈ': 176, 'ɑːˌ': 177, 'ɬˈ': 178}
def tokenize(content, lang_marker="en"):
@ -130,15 +127,8 @@ def example_usage():
phones = [f"<s>"] + [ " " if not p else p for p in split ] + [f"</s>"]
return torch.tensor([*map(symmap.get, phones)]).to()
resps = torch.load("data/qnt.pt")[0][:2, :].to(device)
kwargs = {
'n_tokens': 1024,
'd_model': 1024,
'n_heads': 16,
'n_layers': 12,
}
model = NAR(**kwargs).to(device)
# to-do: unmangle this and the resp shit
qnt = torch.load("data/qnt.pt")[0].t()[:, :2].to(device)
text_list = [
#torch.tensor([1, 2, 3], device=device),
@ -149,65 +139,36 @@ def example_usage():
x8(torch.tensor([2, 3], device=device)),
]
resps_x1_list = [
resps[:1].t().to(device),
resps_list = [
qnt.to(device),
]
resps_x8_list = [
resps.t().to(device),
]
kwargs = {
'n_tokens': 1024,
'd_model': 1024,
'n_heads': 16,
'n_layers': 12,
}
model = NAR(**kwargs).to(device)
engine = Engine(model=model, optimizer=torch.optim.AdamW(model.parameters(), lr=1e-4))
model.eval()
codes = model(
text_list,
proms_list,
resps_list=resps_x1_list,
sampling_temperature=0.2,
)[0]
def sample( name ):
engine.eval()
codes = engine( text_list, proms_list, resps_list=[r[..., 0].unsqueeze(-1) for r in resps_list], sampling_temperature=0.2 )
decode_to_file( codes[0], f"data/nar.{name}.wav", device )
decode_to_file(
codes,
Path("data/test/test.nar.init.wav"),
device
)
def train():
engine.train()
t = trange(60)
for i in t:
stats = {"step": i}
stats |= engine.traverse(text_list=text_list, proms_list=proms_list, resps_list=resps_list)
optimizer = torch.optim.AdamW(model.parameters(), lr=1e-4)
t.set_description(f"{stats}")
model.train()
for i in trange(50):
optimizer.zero_grad()
_ = model(text_list, proms_list, resps_list=resps_x8_list)
losses = gather_attribute(model, "loss")
loss = sum(losses.values())
loss.backward()
optimizer.step()
if i % 20 == 0:
stats = {k: v.item() for k, v in losses.items()}
stats["loss"] = loss.item()
print(f"iter={i}, {stats}.")
model.eval()
for i in trange(1, 2): # cfg.models.prom_levels):
resps_list = [
resps[:i].t().to(device),
]
codes = model(
text_list,
proms_list,
resps_list=resps_list,
sampling_temperature=0.2,
)[0]
decode_to_file(
codes,
Path(f"data/test/test.nar.1-{i}.wav"),
device
)
sample("init")
train()
sample("final")
if __name__ == "__main__":

View File

@ -1,17 +1,13 @@
# todo: clean this mess up
# todo: yank deepspeed dependent code out into its own thing
from .config import cfg
from .data import create_train_val_dataloader
from .emb import qnt
from .utils import setup_logging, to_device, trainer, flatten_dict, do_gc
from .utils import wrapper as ml
from .models import get_models
import auraloss
import deepspeed
import json
import logging
import random
@ -21,10 +17,6 @@ import traceback
from collections import defaultdict
from deepspeed import comm as dist
from deepspeed import DeepSpeedConfig
from deepspeed.accelerator import get_accelerator
from tqdm import tqdm
mel_stft_loss = auraloss.freq.MelSTFTLoss(24_000, device="cuda")
@ -38,210 +30,120 @@ def left_crop(x, len):
return x[..., 0:len]
_logger = logging.getLogger(__name__)
deepspeed._initialized_dist = False
def load_engines():
if not deepspeed._initialized_dist:
deepspeed._initialized_dist = True
deepspeed.init_distributed()
def train_feeder(engine, batch):
engine( text_list=batch["text"], proms_list=batch["proms"], resps_list=batch["resps"] )
models = get_models(cfg.models.get())
engines = dict()
losses = engine.gather_attribute("loss")
for name in models:
model = models[name]
loss = torch.stack([*losses.values()]).sum()
optimizer = None
lr_scheduler = None
stats = {}
stats |= {k: v.item() for k, v in losses.items()}
Adam = ml.Adam
AdamW = ml.AdamW
return loss, stats
if cfg.hyperparameters.optimizer.lower() == "adamw-torch":
optimizer = AdamW(
model.parameters(),
lr=cfg.hyperparameters.learning_rate,
betas=(0.9, 0.96),
eps=1e-07,
weight_decay=0.01,
)
@torch.inference_mode()
def run_eval(engines, eval_name, dl):
engines_stats = {
'eval': eval_name
}
if cfg.trainer.load_state_dict:
load_dir = cfg.ckpt_dir / name / "fp32.pth"
model.load_state_dict(torch.load(load_dir))
AR = None
NAR = None
ds_cfg=cfg.get_ds_cfg(model=model)
config_class=DeepSpeedConfig(ds_cfg)
engines[name] = trainer.Engine(
model=model,
config=ds_cfg,
config_class=config_class,
optimizer=optimizer,
lr_scheduler=lr_scheduler,
)
names = []
for name, engine in engines.items():
names.append(name)
if name[:2] == "ar":
AR = engine
elif name[:3] == "nar":
NAR = engine
stats = defaultdict(list)
stats['loss'] = []
def process( name, batch, resps_list ):
for speaker, path, ref, hyp, prom in zip(batch["spkr_name"], batch["path"], batch["resps"], resps_list, batch["proms"]):
if len(hyp) == 0:
continue
filename = f'{speaker}_{path.parts[-1]}'
# to-do, refine the output dir to be sane-er
ref_path = (cfg.log_dir / str(engines.global_step) / "ref" / filename).with_suffix(".wav")
hyp_path = (cfg.log_dir / str(engines.global_step) / name / eval_name / filename).with_suffix(".wav")
prom_path = (cfg.log_dir / str(engines.global_step) / name / "prom" / filename).with_suffix(".wav")
hyp_path.parent.mkdir(parents=True, exist_ok=True)
ref_path.parent.mkdir(parents=True, exist_ok=True)
prom_path.parent.mkdir(parents=True, exist_ok=True)
ref_audio, sr = qnt.decode_to_file(ref, ref_path)
hyp_audio, sr = qnt.decode_to_file(hyp, hyp_path)
prom_audio, sr = qnt.decode_to_file(prom, prom_path)
# pseudo loss calculation since we don't get the logits during eval
min_length = min( ref_audio.shape[-1], hyp_audio.shape[-1] )
ref_audio = ref_audio[..., 0:min_length]
hyp_audio = hyp_audio[..., 0:min_length]
try:
stats['loss'].append(mel_stft_loss(hyp_audio, ref_audio).item())
except Exception as e:
print(str(e))
for batch in tqdm(dl):
batch: dict = to_device(batch, cfg.device)
# if we're training both models, provide output for both
if AR is not None and NAR is not None:
name = "+".join(names)
resps_list = AR(text_list=batch["text"], proms_list=batch["proms"], max_steps=cfg.evaluation.steps, sampling_temperature=cfg.evaluation.temperature)
resps_list = [ r.unsqueeze(-1) for r in resps_list ]
resps_list = NAR(text_list=batch["text"], proms_list=batch["proms"], resps_list=resps_list, sampling_temperature=cfg.evaluation.temperature)
process( name, batch, resps_list )
else:
for name in engines:
model = engines[name]
if name.startswith("ar"):
resps_list = model(
text_list=batch["text"],
proms_list=batch["proms"],
max_steps=cfg.evaluation.steps,
sampling_temperature=cfg.evaluation.ar_temperature,
)
resps_list = [r.unsqueeze(-1) for r in resps_list]
elif name.startswith("nar"):
resps_list = model(
text_list=batch["text"],
proms_list=batch["proms"],
resps_list=[r[..., 0].unsqueeze(-1) for r in batch["resps"]],
sampling_temperature=cfg.evaluation.nar_temperature,
)
else:
raise NotImplementedError(name)
process( name, batch, resps_list )
stats = {k: sum(v) / len(v) for k, v in stats.items()}
engines_stats.update(flatten_dict({ name: stats }))
iteration = engines.global_step
engines_stats['it'] = iteration
engines_stats['epoch'] = iteration * cfg.hyperparameters.gradient_accumulation_steps / len(train_dl)
_logger.info(f"Validation Metrics: {json.dumps(engines_stats)}.")
return trainer.load_engines(engines, cfg)
def main():
setup_logging(cfg.log_dir)
#dist.init_distributed(dist_backend=get_accelerator().communication_backend_name())
if not deepspeed._initialized_dist:
deepspeed._initialized_dist = True
deepspeed.init_distributed()
train_dl, subtrain_dl, val_dl = create_train_val_dataloader()
def train_feeder(engines, batch, name):
stats = {}
model = engines[name]
if name.startswith("ar"):
_ = model(
text_list=batch["text"],
proms_list=batch["proms"],
resp_list=[r[..., 0] for r in batch["resps"]],
)
elif name.startswith("nar"):
_ = model(
text_list=batch["text"],
proms_list=batch["proms"],
resps_list=batch["resps"],
)
else:
raise NotImplementedError(name)
losses = model.gather_attribute("loss")
loss = torch.stack([*losses.values()]).sum()
stats = {}
stats |= {k: v.item() for k, v in losses.items()}
stats |= engines.gather_attribute("scalar")
return loss, stats
@torch.inference_mode()
def run_eval(engines, eval_name, dl):
engines_stats = {
'eval': eval_name
}
AR = None
NAR = None
names = []
for name in engines:
model = engines[name]
names.append(name)
if name[:2] == "ar":
AR = model
elif name[:3] == "nar":
NAR = model
stats = defaultdict(list)
stats['loss'] = []
for batch in tqdm(dl):
batch: dict = to_device(batch, cfg.device)
# if we're training both models, provide output for both
if AR is not None and NAR is not None:
name = "+".join(names)
resp_list = AR(text_list=batch["text"], proms_list=batch["proms"], max_steps=cfg.evaluation.steps, sampling_temperature=cfg.evaluation.temperature)
resps_list = [ r.unsqueeze(-1) for r in resp_list ]
resps_list = NAR(text_list=batch["text"], proms_list=batch["proms"], resps_list=resps_list, sampling_temperature=cfg.evaluation.temperature)
for speaker, path, ref, hyp, prom in zip(batch["spkr_name"], batch["path"], batch["resps"], resps_list, batch["proms"]):
if len(hyp) == 0:
continue
filename = f'{speaker}_{path.parts[-1]}'
# to-do, refine the output dir to be sane-er
ref_path = (cfg.log_dir / str(engines.global_step) / "ref" / filename).with_suffix(".wav")
hyp_path = (cfg.log_dir / str(engines.global_step) / name / eval_name / filename).with_suffix(".wav")
prom_path = (cfg.log_dir / str(engines.global_step) / name / "prom" / filename).with_suffix(".wav")
hyp_path.parent.mkdir(parents=True, exist_ok=True)
ref_path.parent.mkdir(parents=True, exist_ok=True)
prom_path.parent.mkdir(parents=True, exist_ok=True)
ref_audio, sr = qnt.decode_to_file(ref, ref_path)
hyp_audio, sr = qnt.decode_to_file(hyp, hyp_path)
prom_audio, sr = qnt.decode_to_file(prom, prom_path)
min_length = min( ref_audio.shape[-1], hyp_audio.shape[-1] )
ref_audio = ref_audio[..., 0:min_length]
hyp_audio = hyp_audio[..., 0:min_length]
stats['loss'].append(mel_stft_loss(hyp_audio, ref_audio).item())
else:
for name in engines:
model = engines[name]
if name.startswith("ar"):
resp_list = model(
text_list=batch["text"],
proms_list=batch["proms"],
max_steps=cfg.evaluation.steps,
sampling_temperature=cfg.evaluation.temperature,
)
resps_list = [r.unsqueeze(-1) for r in resp_list]
elif name.startswith("nar"):
resps_list = model(
text_list=batch["text"],
proms_list=batch["proms"],
resps_list=[r[..., 0].unsqueeze(-1) for r in batch["resps"]],
sampling_temperature=cfg.evaluation.temperature,
)
else:
raise NotImplementedError(name)
losses = model.gather_attribute("loss")
batch_stats = {}
batch_stats |= {k: v.item() for k, v in losses.items()}
batch_stats |= engines.gather_attribute("scalar")
for k, v in batch_stats.items():
stats[k].append(v)
for speaker, path, ref, hyp, prom in zip(batch["spkr_name"], batch["path"], batch["resps"], resps_list, batch["proms"]):
if len(hyp) == 0:
continue
filename = f'{speaker}_{path.parts[-1]}'
# to-do, refine the output dir to be sane-er
ref_path = (cfg.log_dir / str(engines.global_step) / "ref" / filename).with_suffix(".wav")
hyp_path = (cfg.log_dir / str(engines.global_step) / name / eval_name / filename).with_suffix(".wav")
prom_path = (cfg.log_dir / str(engines.global_step) / name / "prom" / filename).with_suffix(".wav")
hyp_path.parent.mkdir(parents=True, exist_ok=True)
ref_path.parent.mkdir(parents=True, exist_ok=True)
prom_path.parent.mkdir(parents=True, exist_ok=True)
ref_audio, sr = qnt.decode_to_file(ref, ref_path)
hyp_audio, sr = qnt.decode_to_file(hyp, hyp_path)
prom_audio, sr = qnt.decode_to_file(prom, prom_path)
# pseudo loss calculation since we don't get the logits during eval
min_length = min( ref_audio.shape[-1], hyp_audio.shape[-1] )
ref_audio = ref_audio[..., 0:min_length]
hyp_audio = hyp_audio[..., 0:min_length]
stats['loss'].append(mel_stft_loss(hyp_audio, ref_audio).item())
stats = {k: sum(v) / len(v) for k, v in stats.items()}
engines_stats.update(flatten_dict({ name: stats }))
iteration = engines.global_step
engines_stats['it'] = iteration
engines_stats['epoch'] = iteration * cfg.hyperparameters.gradient_accumulation_steps / len(train_dl)
_logger.info(f"Validation Metrics: {json.dumps(engines_stats)}.")
def eval_fn(engines):
try:
run_eval(engines, "subtrain", subtrain_dl)
@ -256,12 +158,10 @@ def main():
qnt.unload_model()
trainer.train(
engines_loader=load_engines,
train_dl=train_dl,
train_feeder=train_feeder,
eval_fn=eval_fn,
)
if __name__ == "__main__":
main()

View File

@ -1,252 +0,0 @@
"""
# https://github.com/enhuiz/pytorch-training-utilities
"""
# to-do: replace this
# to-do: swap out deepspeed
from ..config import Config
from .distributed import fix_unset_envs
from .utils import dispatch_attribute, flatten_dict, gather_attribute, do_gc, to_device
import logging
import time
import torch
import torch.distributed
from deepspeed import DeepSpeedEngine
from torch import Tensor
from torch.distributed import all_reduce
from typing import Any, Protocol
Stats = dict[str, float]
_logger = logging.getLogger(__name__)
class Engine(DeepSpeedEngine):
def __init__(self, *args, **kwargs):
fix_unset_envs()
super().__init__(None, *args, **kwargs)
self._frozen_params = set()
def freeze(self):
for p in self.module.parameters():
if p.requires_grad:
p.requires_grad_(False)
self._frozen_params.add(p)
def unfreeze(self):
for p in self._frozen_params:
p.requires_grad_(True)
self._frozen_params.clear()
@property
def global_step(self):
return self.global_steps
def gather_attribute(self, *args, **kwargs):
return gather_attribute(self.module, *args, **kwargs)
def dispatch_attribute(self, *args, **kwargs):
return dispatch_attribute(self.module, *args, **kwargs)
class TrainFeeder(Protocol):
def __call__(
self, *, engines: "Engines", batch: Any, name: str
) -> None | tuple[Tensor, Stats]:
...
class Engines(dict[str, Engine]):
def setup(self, cfg: Config):
self._cfg = cfg
self._global_step = 0
@property
def cfg(self) -> Config:
return self._cfg
@property
def config(self):
return self._cfg
@property
def global_step(self):
return self._global_step
def gather_attribute(self, *args, **kwargs):
ret = {}
for engine in self.values():
ret |= engine.gather_attribute(*args, **kwargs)
return ret
def dispatch_attribute(self, *args, **kwargs):
for engine in self.values():
engine.dispatch_attribute(*args, **kwargs)
def save_checkpoint(self, tag=None):
if not tag:
tag = self.cfg.trainer.save_tag
tag = tag.lower()
if tag[:2] == "it" or tag[:4] == "step":
tag = self.global_step
self.cfg.ckpt_dir.mkdir(parents=True, exist_ok=True)
for name, engine in self.items():
engine.save_checkpoint(self.cfg.ckpt_dir / name, tag=tag)
def load_checkpoint(self, tag=None):
if not tag:
tag = self.cfg.trainer.load_tag
for name, engine in self.items():
load_dir = self.cfg.ckpt_dir / name
engine.load_checkpoint(
tag=tag,
load_dir=load_dir,
load_module_strict=self.cfg.trainer.strict_loading,
load_optimizer_states=self.cfg.trainer.load_states,
load_lr_scheduler_states=self.cfg.trainer.load_states,
load_module_only=False, # not self.cfg.trainer.load_states,
)
if self.cfg.trainer.restart_step_count:
engine.global_steps = 0
# update the LR because for some god awful reason it gets overwritten when loading from a checkpoint but only when it's not using a scheduler
if self.cfg.hyperparameters.scheduler_type == "":
self.set_lr(self.cfg.hyperparameters.learning_rate)
self._update_global_step()
def set_lr(self, lr):
try:
for engine in self.values():
if hasattr(engine.optimizer, 'param_groups'):
print(engine.optimizer.param_groups)
for param_group in engine.optimizer.param_groups:
param_group['lr'] = lr
else:
engine.optimizer.set_lr(lr)
except Exception as e:
print(str(e))
def _update_global_step(self):
for engine in self.values():
self._global_step = max(self._global_step, engine.global_step)
def eval(self):
for engine in self.values():
engine.eval()
def train(self):
for engine in self.values():
engine.train()
def step(self, feeder: TrainFeeder, batch):
total_elapsed_time = 0
stats: Any = dict()
if self.cfg.trainer.gc_mode == 'step':
do_gc()
batch = to_device(batch, torch.cuda.current_device())
for name, engine in self.items():
torch.cuda.synchronize()
if self.cfg.trainer.gc_mode == 'substep':
do_gc()
start_time = time.time()
tries = 4
n_ooms = torch.zeros([], device=self.cfg.device)
if self.cfg.trainer.aggressive_optimizations:
batch = to_device(batch, torch.cuda.current_device())
# engine = engine.to(torch.cuda.current_device())
while tries >= 0:
try:
res = feeder( engines=self, batch=batch, name=name )
break
except RuntimeError as e:
print("Forward", str(e))
if "out of memory" not in str(e):
self.save_checkpoint()
raise e
# shrink batch size until it's happy
for k in batch:
batch[k] = batch[k][:-1]
if tries <= 0:
# trigger OOM
n_ooms += 1
else:
# also do GC
do_gc()
continue
all_reduce(n_ooms)
if n_ooms.item() > 0:
self.save_checkpoint()
raise RuntimeError("Out of memory during forward pass!")
if res is None:
continue
loss, engine_stats = res
n_ooms = torch.zeros([], device=self.cfg.device)
if self.cfg.trainer.aggressive_optimizations:
batch = to_device(batch, 'cpu')
try:
engine.backward(loss)
except RuntimeError as e:
print("Backwards:", str(e))
if "out of memory" not in str(e):
self.save_checkpoint()
raise e
n_ooms += 1
all_reduce(n_ooms)
if n_ooms.item() > 0:
self.save_checkpoint()
raise RuntimeError("Out of memory during backwards pass!")
engine.step()
torch.cuda.synchronize()
elapsed_time = time.time() - start_time
total_elapsed_time += elapsed_time
stats.update(
flatten_dict(
{
name.split("-")[0]: dict(
loss=loss.item(),
lr=engine.get_lr()[0],
grad_norm=engine.get_global_grad_norm(), # This norm is delayed but global and avoids extra computation
elapsed_time=elapsed_time,
engine_step=engine.global_step,
**engine_stats,
)
}
),
)
del loss
# engine = engine.to('cpu')
self._update_global_step()
stats["batch_size"] = len(batch["text"])
stats["elapsed_time"] = total_elapsed_time
stats["wall_time"] = time.time()
stats["global_step"] = self.global_step
return stats

View File

@ -17,239 +17,258 @@ from torch.utils.data import DataLoader
from tqdm import tqdm
from typing import Protocol
from ..config import Config
from ..config import cfg
from .distributed import (
global_leader_only,
global_rank,
is_global_leader,
is_local_leader,
local_leader_only,
fix_unset_envs,
global_leader_only,
global_rank,
is_global_leader,
is_local_leader,
local_leader_only,
)
from .engines import Engine, Engines, TrainFeeder
from ..engines import Engine, Engines, TrainFeeder, default_feeder
from ..models import get_models
from .utils import to_device, do_gc
from ..utils import wrapper as ml
_logger = logging.getLogger(__name__)
_engines: Engines
_command: str
def get_global_step():
try:
return _engines.global_step
except:
return None
try:
return _engines.global_step
except:
return None
def get_micro_step():
try:
return _engines.micro_step
except:
return None
def get_cfg():
try:
return _engines.cfg
except:
raise RuntimeError("Trainer has not been setup. Have you called trainer.train?")
try:
return _engines.micro_step
except:
return None
def get_cmd():
try:
return _command
except:
raise RuntimeError("Trainer has not been setup. Have you called trainer.train?")
try:
return _command
except:
raise RuntimeError("Trainer has not been setup. Have you called trainer.train?")
get_iteration = get_global_step
def load_engines():
models = get_models(cfg.models.get())
engines = dict()
class EnginesLoader(Protocol):
def __call__(self) -> Engines:
...
for name in models:
model = models[name]
optimizer = None
lr_scheduler = None
def load_engines(engines: dict[str, Engine], config: Config):
engines = Engines(engines)
engines.setup(config)
if not engines.cfg.trainer.load_state_dict:
engines.load_checkpoint()
return engines
if cfg.hyperparameters.optimizer.lower() == "adamw-torch":
optimizer = ml.AdamW(
model.parameters(),
lr=cfg.hyperparameters.learning_rate,
betas=(0.9, 0.96),
eps=1e-07,
weight_decay=0.01,
)
if cfg.trainer.load_state_dict:
load_path = cfg.ckpt_dir / name / "fp32.pth"
model.load_state_dict(torch.load(load_path))
engines[name] = Engine(
model=model,
optimizer=optimizer,
lr_scheduler=lr_scheduler,
)
engines = Engines(engines)
engines.setup()
if not cfg.trainer.load_state_dict:
engines.load_checkpoint()
return engines
class EvalFn(Protocol):
def __call__(self, *, engines: Engines):
...
def __call__(self, *, engines: Engines):
...
class Logger(Protocol):
def __call__(self, *, data: dict):
...
def __call__(self, *, data: dict):
...
@cache
def _get_stdin_selector():
selector = selectors.DefaultSelector()
selector.register(fileobj=sys.stdin, events=selectors.EVENT_READ)
return selector
selector = selectors.DefaultSelector()
selector.register(fileobj=sys.stdin, events=selectors.EVENT_READ)
return selector
def _non_blocking_input():
global _command
l = [""]
if is_global_leader():
s = ""
selector = _get_stdin_selector()
events = selector.select(timeout=0)
for key, _ in events:
s: str = key.fileobj.readline().strip()
_logger.info(f'Get stdin "{s}".')
l[0] = s
broadcast_object_list(l, src=0)
_command = l[0]
return _command
global _command
l = [""]
if is_global_leader():
s = ""
selector = _get_stdin_selector()
events = selector.select(timeout=0)
for key, _ in events:
s: str = key.fileobj.readline().strip()
_logger.info(f'Get stdin "{s}".')
l[0] = s
broadcast_object_list(l, src=0)
_command = l[0]
return _command
def _make_infinite_epochs(dl):
while True:
_logger.info("New epoch starts.")
yield from tqdm(dl, "Epoch progress", dynamic_ncols=True)
while True:
_logger.info("New epoch starts.")
yield from tqdm(dl, "Epoch progress", dynamic_ncols=True)
@local_leader_only(default=None)
def logger(data):
return _logger.info(json.dumps(data, default=str))
return _logger.info(json.dumps(data, default=str))
def seed(seed):
# Set up random seeds, after fork()
random.seed(seed + global_rank())
np.random.seed(seed + global_rank())
torch.manual_seed(seed + global_rank())
# Set up random seeds, after fork()
random.seed(seed + global_rank())
np.random.seed(seed + global_rank())
torch.manual_seed(seed + global_rank())
def train(
engines_loader: EnginesLoader,
train_dl: DataLoader,
train_feeder: TrainFeeder,
eval_fn: EvalFn,
logger: Logger = logger,
train_dl: DataLoader,
train_feeder: TrainFeeder = default_feeder,
eval_fn: EvalFn = lambda x: ...,
logger: Logger = logger,
):
engines = engines_loader()
cfg = engines.cfg
fix_unset_envs()
"""
if is_local_leader():
cfg.dump()
_logger.info(cfg)
"""
engines = load_engines()
# Setup global engines
global _engines
_engines = engines
"""
if is_local_leader():
cfg.dump()
_logger.info(cfg)
"""
events = []
# Setup global engines
global _engines
_engines = engines
eval_fn = global_leader_only(eval_fn)
events = []
# Pre-loop command
command = _non_blocking_input()
if command in ["eval", "eval_quit"]:
engines.eval()
eval_fn(engines=engines)
engines.train()
if command in ["quit", "eval_quit"]:
return
eval_fn = global_leader_only(eval_fn)
last_save_step = engines.global_step
last_eval_step = 0
# Pre-loop command
command = _non_blocking_input()
if command in ["eval", "eval_quit"]:
engines.eval()
eval_fn(engines=engines)
engines.train()
if command in ["quit", "eval_quit"]:
return
# Training loop
for batch in _make_infinite_epochs(train_dl):
if engines.global_step >= cfg.trainer.iterations:
break
last_save_step = engines.global_step
last_eval_step = 0
#batch = to_device(batch, torch.cuda.current_device())
stats = engines.step(feeder=train_feeder, batch=batch)
# Training loop
for batch in _make_infinite_epochs(train_dl):
if engines.global_step >= cfg.trainer.iterations:
break
iteration = stats['global_step'] # * cfg.hyperparameters.gradient_accumulation_steps
stats['it'] = iteration
stats['epoch'] = iteration * cfg.hyperparameters.gradient_accumulation_steps / len(train_dl)
#batch = to_device(batch, torch.cuda.current_device())
stats = engines.step(batch=batch, feeder=train_feeder)
stats['batch'] = {
'size': stats['batch_size'],
'id': batch['spkr_id'],
'index': [ index for index in batch['index'] ],
'text_len': [ text.shape[0] for text in batch['text'] ],
'prom_len': [ prom.shape[0] for prom in batch['proms'] ],
'resp_len': [ resp.shape[0] for resp in batch['resps'] ],
}
iteration = stats['global_step'] # * cfg.hyperparameters.gradient_accumulation_steps
stats['it'] = iteration
stats['epoch'] = iteration * cfg.hyperparameters.gradient_accumulation_steps / len(train_dl)
del stats['batch_size']
del stats['wall_time']
del stats['global_step']
stats['batch'] = {
'size': stats['batch_size'],
'id': batch['spkr_id'],
'index': [ index for index in batch['index'] ],
'text_len': [ text.shape[0] for text in batch['text'] ],
'prom_len': [ prom.shape[0] for prom in batch['proms'] ],
'resp_len': [ resp.shape[0] for resp in batch['resps'] ],
}
elapsed_time = stats.get("elapsed_time", 0)
_logger.info(f"Training Metrics: {json.dumps(stats)}.")
del stats['batch_size']
del stats['wall_time']
del stats['global_step']
command = _non_blocking_input()
elapsed_time = stats.get("elapsed_time", 0)
_logger.info(f"Training Metrics: {json.dumps(stats)}.")
if "@" in command:
what, when = command.split("@")
try:
events.append((what, int(when)))
_logger.info(f"Event {command} registered.")
except Exception as e:
_logger.error(e)
command = ""
command = _non_blocking_input()
# Commands are the current command plus the triggered (i.e. iteration >= trigger point) events
events = [e for e in events if e[1] >= engines.global_step]
commands = [command] + [e[0] for e in events if e[1] == engines.global_step]
if "@" in command:
what, when = command.split("@")
try:
events.append((what, int(when)))
_logger.info(f"Event {command} registered.")
except Exception as e:
_logger.error(e)
command = ""
for command in commands:
if command in ["event show", "event"]:
msg = "Events:\n" + "\n".join(["@".join(map(str, e)) for e in events])
_logger.info(msg)
# Commands are the current command plus the triggered (i.e. iteration >= trigger point) events
events = [e for e in events if e[1] >= engines.global_step]
commands = [command] + [e[0] for e in events if e[1] == engines.global_step]
if command == "event clear":
events.clear()
for command in commands:
if command in ["event show", "event"]:
msg = "Events:\n" + "\n".join(["@".join(map(str, e)) for e in events])
_logger.info(msg)
if "time" in command:
target_iter = cfg.trainer.iterations
if " to " in command:
try:
target_iter = int(command.split(" to ")[-1])
except Exception as e:
_logger.error(e)
remaining_iters = target_iter - engines.global_step + 1
remaining_time = int(remaining_iters * elapsed_time)
_logger.info(humanize.precisedelta(remaining_time))
if command == "event clear":
events.clear()
if "lr" in command:
rate = float(command.split(" ")[-1])
engines.set_lr(rate)
print("Updating LR to:", rate)
if "time" in command:
target_iter = cfg.trainer.iterations
if " to " in command:
try:
target_iter = int(command.split(" to ")[-1])
except Exception as e:
_logger.error(e)
remaining_iters = target_iter - engines.global_step + 1
remaining_time = int(remaining_iters * elapsed_time)
_logger.info(humanize.precisedelta(remaining_time))
save_ckpt_every = cfg.trainer.save_frequency or cfg.evaluation.frequency
if "lr" in command:
rate = float(command.split(" ")[-1])
engines.set_lr(rate)
print("Updating LR to:", rate)
saving_commands = ["save"]
save_ckpt_every = cfg.trainer.save_frequency or cfg.evaluation.frequency
if cfg.trainer.save_on_quit:
saving_commands.append("quit")
saving_commands = ["save"]
if engines.global_step != last_save_step:
if engines.global_step % save_ckpt_every == 0 or command in saving_commands:
engines.save_checkpoint()
last_save_step = engines.global_step
if cfg.trainer.save_on_quit:
saving_commands.append("quit")
if engines.global_step != last_eval_step:
if engines.global_step % cfg.evaluation.frequency == 0 or command in ["eval"]:
do_gc()
if engines.global_step != last_save_step:
if engines.global_step % save_ckpt_every == 0 or command in saving_commands:
engines.save_checkpoint()
last_save_step = engines.global_step
engines.eval()
eval_fn(engines=engines)
engines.train()
last_eval_step = engines.global_step
if engines.global_step != last_eval_step:
if engines.global_step % cfg.evaluation.frequency == 0 or command in ["eval"]:
do_gc()
if command in ["quit"]:
return
engines.eval()
eval_fn(engines=engines)
engines.train()
last_eval_step = engines.global_step
if command in ["quit"]:
return