default to greedy sample AR (i should probably test this more but it seems to pass my harvard sentences and tongue twisters)

This commit is contained in:
mrq 2024-10-18 16:58:56 -05:00
parent fc8dfd8617
commit c8f31db1de
4 changed files with 8 additions and 8 deletions

View File

@ -21,7 +21,7 @@ def main():
parser.add_argument("--max-ar-steps", type=int, default=12 * cfg.dataset.frames_per_second)
parser.add_argument("--max-nar-levels", type=int, default=7)
parser.add_argument("--ar-temp", type=float, default=1.0)
parser.add_argument("--ar-temp", type=float, default=0.0)
parser.add_argument("--nar-temp", type=float, default=0.01)
parser.add_argument("--min-ar-temp", type=float, default=-1.0)
parser.add_argument("--min-nar-temp", type=float, default=-1.0)

View File

@ -429,7 +429,7 @@ class Evaluation:
size: int = 64 # number of samples to generate during eval / val
steps: int = 500
ar_temperature: float = 1.0 # AR temp for inferencing
ar_temperature: float = 0.0 # AR temp for inferencing
nar_temperature: float = 0.0 # NAR temp for inferencing
nar_levels: int = 0 # maximum NAR levels to use for inferencing

View File

@ -58,7 +58,7 @@ def main():
parser.add_argument("--max-ar-steps", type=int, default=12 * cfg.dataset.frames_per_second)
parser.add_argument("--max-nar-levels", type=int, default=7)
parser.add_argument("--ar-temp", type=float, default=1.0)
parser.add_argument("--ar-temp", type=float, default=0.0)
parser.add_argument("--nar-temp", type=float, default=0.0)
parser.add_argument("--min-ar-temp", type=float, default=-1.0)
parser.add_argument("--min-nar-temp", type=float, default=-1.0)
@ -155,7 +155,7 @@ def main():
elif args.comparison == "dtype":
current_dtype = cfg.inference.weight_dtype
other_dtype = "float32"
if current_dtype == "float16":
other_dtype = "bfloat16"
elif current_dtype == "bfloat16":

View File

@ -185,11 +185,11 @@ class TTS():
input_prompt_length=0.0,
input_prompt_prefix=False,
#
ar_temp=0.95,
nar_temp=0.5,
ar_temp=0.0,
nar_temp=0.0,
#
min_ar_temp=0.95,
min_nar_temp=0.5,
min_ar_temp=0.0,
min_nar_temp=0.0,
#
top_p=1.0,
top_k=0,