I think I made resp_parallel_training=True faster with loss factoring?

This commit is contained in:
mrq 2025-02-26 23:13:32 -06:00
parent 06ef3daf3c
commit ceecac6ffe
2 changed files with 15 additions and 32 deletions

View File

@ -629,7 +629,10 @@ class Engines(dict[str, Engine]):
if cfg.lora is not None:
key_name = cfg.lora.full_name
stats.update(flatten_dict({key_name.split("-")[0]: model_stats}))
if len(self) == 1:
stats.update(flatten_dict(model_stats))
else:
stats.update(flatten_dict({key_name.split("-")[0]: model_stats}))
self._update()

View File

@ -748,7 +748,7 @@ class Base_V2(nn.Module):
# filter tokens that exceed the vocab size
sequence = torch.where( sequence >= logit.shape[-1], self.ignore_index, sequence )
# drop if all tokens are ignored
if all(sequence == self.ignore_index):
if torch.all(sequence == self.ignore_index):
return None, None
# shift if causal
@ -757,8 +757,14 @@ class Base_V2(nn.Module):
logit = logit[..., :-l, :] # shift the target so that token n...
sequence = sequence[..., l:] # ...predicts token n + 1
# flatten batch
if sequence.dim() > 1:
logit = logit.reshape(-1, logit.shape[-1])
sequence = sequence.reshape(-1)
nll = None
metrics = None
if compute_hard_loss:
nll = F.cross_entropy( logit, sequence, ignore_index=self.ignore_index )
@ -868,41 +874,15 @@ class Base_V2(nn.Module):
if classifier_level.endswith(f':{i}:{i}'):
level = i
break
"""
if name == "resp":
name = f'{name}[{level}]'
"""
sequence = token if token.dim() <= 1 else token[:, level]
nll, metrics = _calc_loss( logits[batch_index][level][start:end], sequence.long(), causal )
else:
nlls = []
accs = []
for level, logit in enumerate( logits[batch_index] ):
sequence = token if token.dim() <= 1 else token[:, level]
nll, metrics = _calc_loss( logit[start:end], sequence.long(), causal )
if name == "resp":
if nll is not None:
if f'{name}[{level}].nll' not in loss:
loss[f'{name}[{level}].nll'] = []
loss[f"{name}[{level}].nll"].append( nll * loss_factor )
if metrics is not None:
if f'{name}[{level}].acc' not in stats:
stats[f'{name}[{level}].acc'] = []
stats[f"{name}[{level}].acc"].append( metrics )
nll = None
metrics = None
else:
if nll:
nlls.append( nll )
if metrics:
accs.append( metrics )
if nlls:
nll = sum(nlls) / len(nlls)
if accs:
accs = sum(accs) / len(accs)
sequence = token.t()
nll, metrics = _calc_loss( logits[batch_index][:, start:end], sequence.long(), causal )
if nll is not None:
if f'{name}.nll' not in loss:
loss[f'{name}.nll'] = []