add segmented sliding attention, also found a bug with prom-less segments in the attention mask generation.........
This commit is contained in:
parent
589cfb0e18
commit
d1d91295b3
|
@ -313,6 +313,8 @@ class ModelExperimentalSettings:
|
|||
# list of floats to manually set
|
||||
use_segmented_attention_mask: bool = False # instead of naively using a full attention mask, use one where each segment cannot attend after itself
|
||||
# this is a flag since I am cautious
|
||||
use_sliding_attention_mask: bool = False # when used with above, applies a sliding mask within the current segment
|
||||
# this is a flag since I am cautious
|
||||
use_streamlined_calc_loss: bool = False # explicitly request the faster pathway for loss calc, in case doing loss one by one instead of one batch is a bottleneck
|
||||
|
||||
# performs token dropout to compensate for errors
|
||||
|
|
|
@ -600,12 +600,28 @@ class Model(LlamaPreTrainedModel):
|
|||
inverted_mask = 1.0 - expanded_mask
|
||||
return inverted_mask.masked_fill( inverted_mask.to(dtype=torch.bool), torch.finfo(inputs_embeds.dtype).min )
|
||||
|
||||
def _apply_sliding_window(self, mask, start_idx, end_idx, window_size):
|
||||
window_size = int(window_size // 2) # ick
|
||||
|
||||
for i in range(start_idx, end_idx):
|
||||
if not window_size:
|
||||
break
|
||||
|
||||
window_left = max(start_idx, i - window_size)
|
||||
window_right = min(end_idx, i + window_size + 1)
|
||||
|
||||
mask[..., i, start_idx:window_left] = 0.0
|
||||
mask[..., i, window_right:end_idx] = 0.0
|
||||
|
||||
return mask
|
||||
|
||||
# some funky segmented-attention mask because my gut says to do this
|
||||
def _update_segmented_mask(
|
||||
self,
|
||||
attention_mask,
|
||||
inputs_embeds,
|
||||
aux_lens, # (bsz, lens), where [batch_index, 0] = text_len, and [batch_index, 1] = prom_len
|
||||
window_sizes = None, # (bsz, lens), same as above
|
||||
past_key_values_length=0,
|
||||
):
|
||||
# [bsz, seq_len] -> [bsz, 1, seq_len, seq_len]
|
||||
|
@ -621,17 +637,28 @@ class Model(LlamaPreTrainedModel):
|
|||
)
|
||||
|
||||
for batch_index, aux_len in enumerate( aux_lens ):
|
||||
text_start, text_end = 0, aux_len[0]
|
||||
window_size = window_sizes[batch_index] if window_sizes is not None else None
|
||||
text_len = aux_len[0]
|
||||
prom_len = aux_len[1]
|
||||
output_len = aux_len[2]
|
||||
|
||||
prom_start, prom_end = text_end, text_end + aux_len[1]
|
||||
output_start, output_end = prom_end, prom_end + aux_len[2]
|
||||
text_window = window_size[0] if window_size is not None else 0
|
||||
prom_window = window_size[1] if window_size is not None else 0
|
||||
output_window = window_size[2] if window_size is not None else 0
|
||||
|
||||
text_start, text_end = 0, text_len
|
||||
prom_start, prom_end = text_end, text_end + prom_len
|
||||
output_start, output_end = prom_end, prom_end + output_len
|
||||
|
||||
if aux_len[0]:
|
||||
if text_len:
|
||||
expanded_mask[batch_index, 0, text_start:text_end, text_start:text_end] = 1.0
|
||||
if aux_len[1]:
|
||||
expanded_mask[batch_index, 0] = self._apply_sliding_window( expanded_mask[batch_index, 0], text_start, text_end, text_window )
|
||||
if prom_len:
|
||||
expanded_mask[batch_index, 0, prom_start:prom_end, text_start:prom_end] = 1.0
|
||||
if aux_len[2]:
|
||||
expanded_mask[batch_index, 0] = self._apply_sliding_window( expanded_mask[batch_index, 0], prom_start, prom_end, prom_window )
|
||||
if output_len:
|
||||
expanded_mask[batch_index, 0, output_start:output_end, text_start:output_end] = 1.0
|
||||
expanded_mask[batch_index, 0] = self._apply_sliding_window( expanded_mask[batch_index, 0], output_start, output_end, output_window )
|
||||
|
||||
# apply the original attention mask
|
||||
expanded_mask = expanded_mask * attention_mask[:, None, None, :].expand(bsz, 1, seq_len, seq_len)
|
||||
|
|
|
@ -300,6 +300,7 @@ class Base_V2(nn.Module):
|
|||
logit_normalization = config.experimental.logit_normalization if config is not None else 0
|
||||
per_level_normalization = config.experimental.per_level_normalization if config is not None else True
|
||||
use_segmented_attention_mask = config.experimental.use_segmented_attention_mask if config is not None else True
|
||||
use_sliding_attention_mask = config.experimental.use_sliding_attention_mask if config is not None else True
|
||||
parallel_attention_mask_dropout = config.experimental.parallel_attention_mask_dropout if config is not None else 0.0
|
||||
|
||||
n_vocab = 256
|
||||
|
@ -392,6 +393,7 @@ class Base_V2(nn.Module):
|
|||
self.len_loss_factor = len_loss_factor
|
||||
self.logit_normalization = False # this actually kills the model's demasking capabilities
|
||||
self.use_segmented_attention_mask = use_segmented_attention_mask
|
||||
self.use_sliding_attention_mask = use_sliding_attention_mask
|
||||
self.parallel_attention_mask_dropout = parallel_attention_mask_dropout
|
||||
|
||||
self.sep = nn.Parameter(torch.randn(d_model))
|
||||
|
@ -1130,23 +1132,28 @@ class Base_V2(nn.Module):
|
|||
|
||||
# create special masks
|
||||
# to-do, create it if mixed (although I expect this model to be purely non-causal)
|
||||
aux_lens = torch.tensor([[2, 2, 0]] * batch_size, device=x.device, dtype=torch.int32)
|
||||
|
||||
text_window = 32 if self.use_sliding_attention_mask else 0
|
||||
audio_window = self.audio_frames_per_second // 2 if self.use_sliding_attention_mask else 0
|
||||
|
||||
aux_lens = [[2, 0, 0]] * batch_size
|
||||
aux_windows = [[text_window, audio_window, audio_window]] * batch_size
|
||||
# fill aux lens
|
||||
for batch_index, batch_input in enumerate( inputs ):
|
||||
for name, input in batch_input:
|
||||
if name in ["phn", "text"]:
|
||||
aux_lens[batch_index][0] = input.shape[0]
|
||||
aux_lens[batch_index][0] = input.shape[0] + 1
|
||||
elif name == "lang":
|
||||
aux_lens[batch_index][0] += 2
|
||||
elif name == "prom":
|
||||
aux_lens[batch_index][1] = input.shape[0]
|
||||
aux_lens[batch_index][1] = input.shape[0] + 1
|
||||
elif name == "tone":
|
||||
aux_lens[batch_index][1] += 2
|
||||
elif name == "resp":
|
||||
aux_lens[batch_index][2] = input.shape[0]
|
||||
|
||||
if self.use_segmented_attention_mask and not any(is_causal):
|
||||
mask = self.model._update_segmented_mask( mask, x, aux_lens )
|
||||
mask = self.model._update_segmented_mask( mask, x, aux_lens, window_sizes=aux_windows )
|
||||
|
||||
output = self._forward(
|
||||
inputs=x,
|
||||
|
|
Loading…
Reference in New Issue
Block a user