add segmented sliding attention, also found a bug with prom-less segments in the attention mask generation.........

This commit is contained in:
mrq 2025-03-21 19:05:49 -05:00
parent 589cfb0e18
commit d1d91295b3
3 changed files with 46 additions and 10 deletions

View File

@ -313,6 +313,8 @@ class ModelExperimentalSettings:
# list of floats to manually set
use_segmented_attention_mask: bool = False # instead of naively using a full attention mask, use one where each segment cannot attend after itself
# this is a flag since I am cautious
use_sliding_attention_mask: bool = False # when used with above, applies a sliding mask within the current segment
# this is a flag since I am cautious
use_streamlined_calc_loss: bool = False # explicitly request the faster pathway for loss calc, in case doing loss one by one instead of one batch is a bottleneck
# performs token dropout to compensate for errors

View File

@ -600,12 +600,28 @@ class Model(LlamaPreTrainedModel):
inverted_mask = 1.0 - expanded_mask
return inverted_mask.masked_fill( inverted_mask.to(dtype=torch.bool), torch.finfo(inputs_embeds.dtype).min )
def _apply_sliding_window(self, mask, start_idx, end_idx, window_size):
window_size = int(window_size // 2) # ick
for i in range(start_idx, end_idx):
if not window_size:
break
window_left = max(start_idx, i - window_size)
window_right = min(end_idx, i + window_size + 1)
mask[..., i, start_idx:window_left] = 0.0
mask[..., i, window_right:end_idx] = 0.0
return mask
# some funky segmented-attention mask because my gut says to do this
def _update_segmented_mask(
self,
attention_mask,
inputs_embeds,
aux_lens, # (bsz, lens), where [batch_index, 0] = text_len, and [batch_index, 1] = prom_len
window_sizes = None, # (bsz, lens), same as above
past_key_values_length=0,
):
# [bsz, seq_len] -> [bsz, 1, seq_len, seq_len]
@ -621,17 +637,28 @@ class Model(LlamaPreTrainedModel):
)
for batch_index, aux_len in enumerate( aux_lens ):
text_start, text_end = 0, aux_len[0]
window_size = window_sizes[batch_index] if window_sizes is not None else None
text_len = aux_len[0]
prom_len = aux_len[1]
output_len = aux_len[2]
prom_start, prom_end = text_end, text_end + aux_len[1]
output_start, output_end = prom_end, prom_end + aux_len[2]
text_window = window_size[0] if window_size is not None else 0
prom_window = window_size[1] if window_size is not None else 0
output_window = window_size[2] if window_size is not None else 0
text_start, text_end = 0, text_len
prom_start, prom_end = text_end, text_end + prom_len
output_start, output_end = prom_end, prom_end + output_len
if aux_len[0]:
if text_len:
expanded_mask[batch_index, 0, text_start:text_end, text_start:text_end] = 1.0
if aux_len[1]:
expanded_mask[batch_index, 0] = self._apply_sliding_window( expanded_mask[batch_index, 0], text_start, text_end, text_window )
if prom_len:
expanded_mask[batch_index, 0, prom_start:prom_end, text_start:prom_end] = 1.0
if aux_len[2]:
expanded_mask[batch_index, 0] = self._apply_sliding_window( expanded_mask[batch_index, 0], prom_start, prom_end, prom_window )
if output_len:
expanded_mask[batch_index, 0, output_start:output_end, text_start:output_end] = 1.0
expanded_mask[batch_index, 0] = self._apply_sliding_window( expanded_mask[batch_index, 0], output_start, output_end, output_window )
# apply the original attention mask
expanded_mask = expanded_mask * attention_mask[:, None, None, :].expand(bsz, 1, seq_len, seq_len)

View File

@ -300,6 +300,7 @@ class Base_V2(nn.Module):
logit_normalization = config.experimental.logit_normalization if config is not None else 0
per_level_normalization = config.experimental.per_level_normalization if config is not None else True
use_segmented_attention_mask = config.experimental.use_segmented_attention_mask if config is not None else True
use_sliding_attention_mask = config.experimental.use_sliding_attention_mask if config is not None else True
parallel_attention_mask_dropout = config.experimental.parallel_attention_mask_dropout if config is not None else 0.0
n_vocab = 256
@ -392,6 +393,7 @@ class Base_V2(nn.Module):
self.len_loss_factor = len_loss_factor
self.logit_normalization = False # this actually kills the model's demasking capabilities
self.use_segmented_attention_mask = use_segmented_attention_mask
self.use_sliding_attention_mask = use_sliding_attention_mask
self.parallel_attention_mask_dropout = parallel_attention_mask_dropout
self.sep = nn.Parameter(torch.randn(d_model))
@ -1130,23 +1132,28 @@ class Base_V2(nn.Module):
# create special masks
# to-do, create it if mixed (although I expect this model to be purely non-causal)
aux_lens = torch.tensor([[2, 2, 0]] * batch_size, device=x.device, dtype=torch.int32)
text_window = 32 if self.use_sliding_attention_mask else 0
audio_window = self.audio_frames_per_second // 2 if self.use_sliding_attention_mask else 0
aux_lens = [[2, 0, 0]] * batch_size
aux_windows = [[text_window, audio_window, audio_window]] * batch_size
# fill aux lens
for batch_index, batch_input in enumerate( inputs ):
for name, input in batch_input:
if name in ["phn", "text"]:
aux_lens[batch_index][0] = input.shape[0]
aux_lens[batch_index][0] = input.shape[0] + 1
elif name == "lang":
aux_lens[batch_index][0] += 2
elif name == "prom":
aux_lens[batch_index][1] = input.shape[0]
aux_lens[batch_index][1] = input.shape[0] + 1
elif name == "tone":
aux_lens[batch_index][1] += 2
elif name == "resp":
aux_lens[batch_index][2] = input.shape[0]
if self.use_segmented_attention_mask and not any(is_causal):
mask = self.model._update_segmented_mask( mask, x, aux_lens )
mask = self.model._update_segmented_mask( mask, x, aux_lens, window_sizes=aux_windows )
output = self._forward(
inputs=x,