better way to compute per-segment losses
This commit is contained in:
parent
6c49ad06a3
commit
da473295b7
3
.gitignore
vendored
3
.gitignore
vendored
|
@ -4,4 +4,5 @@ __pycache__
|
|||
/venv
|
||||
/*.egg-info
|
||||
/vall_e/version.py
|
||||
/.cache
|
||||
/.cache
|
||||
/voices
|
||||
|
|
|
@ -213,7 +213,7 @@ class Model:
|
|||
attention: str = "auto"
|
||||
audio_embedding_sums: bool = True
|
||||
dropout: float = 0.1 # adjustable dropout value
|
||||
loss_factors: dict = field(default_factory=lambda: { "text": 0.1, "prom": 0.1, "resp": 1.0 })
|
||||
loss_factors: dict = field(default_factory=lambda: { "text": 0.1, "prom": 0.0, "resp": 1.0 })
|
||||
|
||||
def get(self, name=None):
|
||||
return [ self ] if not name or self.name == name else []
|
||||
|
|
|
@ -845,10 +845,10 @@ class Base(nn.Module):
|
|||
quant_levels: Tensor | None = None
|
||||
):
|
||||
x_list = []
|
||||
for b_i in range(len(inputs)):
|
||||
for batch_index, batch_input in enumerate(inputs):
|
||||
batch = []
|
||||
for i in range(len(inputs[b_i])):
|
||||
name, input = inputs[b_i][i]
|
||||
quant_level = quant_levels[batch_index] if quant_levels is not None else None
|
||||
for name, input in batch_input:
|
||||
embedding = None
|
||||
if name == "text":
|
||||
embedding = self.text_emb( input )
|
||||
|
@ -859,7 +859,7 @@ class Base(nn.Module):
|
|||
elif name == "tone":
|
||||
embedding = self.tones_emb( input )
|
||||
elif name == "resp":
|
||||
embedding = self.resps_emb( input, quant_levels[b_i] if quant_levels is not None else None )
|
||||
embedding = self.resps_emb( input, quant_level )
|
||||
else:
|
||||
continue
|
||||
|
||||
|
@ -869,61 +869,101 @@ class Base(nn.Module):
|
|||
|
||||
return x_list
|
||||
|
||||
def training_targets(
|
||||
def calc_loss(
|
||||
self,
|
||||
inputs: list,
|
||||
logits,
|
||||
|
||||
quant_levels: Tensor | None = None,
|
||||
):
|
||||
x_list = []
|
||||
for bi in range(len(inputs)):
|
||||
batch = []
|
||||
for i in range(len(inputs[bi])):
|
||||
name, input = inputs[bi][i]
|
||||
device = input.device
|
||||
# old, "naive" way, no loss factoring
|
||||
if not self.config.loss_factors:
|
||||
target_list = []
|
||||
for batch in inputs:
|
||||
target = []
|
||||
for name, input in batch:
|
||||
if name == "prom":
|
||||
target.append( torch.full_like(input[..., 0], self.ignore_index) )
|
||||
elif name in ["text", "lang", "tone", "targ"]:
|
||||
target.append( input )
|
||||
|
||||
if name == "prom":
|
||||
batch.append( torch.full_like(input[..., 0], self.ignore_index) )
|
||||
elif name in ["text", "lang", "tone", "targ"]:
|
||||
batch.append( input )
|
||||
target_list.append( _join( target, torch.tensor(self.ignore_index, device=target[-1].device) ) )
|
||||
|
||||
x_list.append( _join( batch, torch.tensor(self.ignore_index, device=device) ) )
|
||||
# modify only for the AR so it can properly behave like a transformer
|
||||
for i in range(len(target_list)):
|
||||
if quant_levels is not None and quant_levels[i] > 0:
|
||||
continue
|
||||
|
||||
return x_list
|
||||
logits[i] = logits[i][..., :-1, :] # shift the target so that token n...
|
||||
target_list[i] = target_list[i][..., 1:] # predicts token n + 1
|
||||
|
||||
def training_targets_split(
|
||||
self,
|
||||
inputs: list,
|
||||
quant_levels: Tensor | None = None
|
||||
):
|
||||
text_lists = []
|
||||
prom_lists = []
|
||||
resp_lists = []
|
||||
target = torch.cat( target_list )
|
||||
inputs = torch.cat( logits )
|
||||
|
||||
for bi in range(len(inputs)):
|
||||
text_batch = []
|
||||
prom_batch = []
|
||||
resp_batch = []
|
||||
self.loss = dict(
|
||||
# "nll" was in the original implementation and should actually just be called something else
|
||||
nll = F.cross_entropy( inputs, target, ignore_index=self.ignore_index )
|
||||
)
|
||||
self.stats = dict(
|
||||
acc = self.accuracy_metric( inputs, target ),
|
||||
# precision = self.precision_metric( inputs, target ),
|
||||
)
|
||||
return
|
||||
|
||||
for i in range(len(inputs[bi])):
|
||||
name, input = inputs[bi][i]
|
||||
device = input.device
|
||||
self.loss = dict()
|
||||
self.stats = dict(acc = dict())
|
||||
|
||||
quant_level = quant_levels[bi] if quant_levels is not None else None
|
||||
info = {}
|
||||
for i, batch in enumerate( inputs ):
|
||||
quant_level = quant_levels[i] if quant_levels is not None else None
|
||||
|
||||
if name == "text":
|
||||
text_batch.append( input )
|
||||
elif name == "prom":
|
||||
prom_batch.append( input[:, quant_level] if quant_level is not None else input )
|
||||
elif name == "targ":
|
||||
resp_batch.append( input )
|
||||
it = 0
|
||||
for name, input in batch:
|
||||
# do not use resp
|
||||
if name == "resp":
|
||||
continue
|
||||
# rename to resp
|
||||
if name == "targ":
|
||||
name = "resp"
|
||||
# select prom level
|
||||
elif name == "prom" and quant_level is not None:
|
||||
input = input[:, quant_level]
|
||||
|
||||
if text_batch:
|
||||
text_lists.append( _join( text_batch, torch.tensor(self.ignore_index, device=device) ) )
|
||||
if prom_batch:
|
||||
prom_lists.append( _join( prom_batch, torch.tensor(self.ignore_index, device=device) ) )
|
||||
if resp_batch:
|
||||
resp_lists.append( _join( resp_batch, torch.tensor(self.ignore_index, device=device) ) )
|
||||
seq_len = input.shape[0]
|
||||
logit = logits[i][it:it+seq_len]
|
||||
it += seq_len + 1 # +1 to incorporate the separator
|
||||
|
||||
# for the AR, shift sequence so that it predicts the next token
|
||||
if quant_level is None or quant_level == 0:
|
||||
logit = logit[..., :-1, :] # get all but the final logit
|
||||
input = input[..., 1:] # shift sequence to the right by one
|
||||
|
||||
return text_lists, prom_lists, resp_lists
|
||||
if name not in info:
|
||||
info[name] = {
|
||||
"targets": [],
|
||||
"logits": [],
|
||||
}
|
||||
|
||||
info[name]["targets"].append( input )
|
||||
info[name]["logits"].append( logit )
|
||||
|
||||
for name, batch in info.items():
|
||||
loss_factor = self.loss_factor(name)
|
||||
if loss_factor == 0.0:
|
||||
continue
|
||||
|
||||
targets = torch.cat( batch["targets"] ).long()
|
||||
inputs = torch.cat( batch["logits"] )
|
||||
|
||||
self.loss[name] = F.cross_entropy( inputs, targets, ignore_index=self.ignore_index ) * loss_factor
|
||||
self.stats["acc"][name] = self.accuracy_metric( inputs, targets )
|
||||
|
||||
# to-do: compute loss per individual batch to scale per RVQ level
|
||||
"""
|
||||
rvq_loss_factor = self.loss_factor("quant")
|
||||
if isinstance( rvq_loss_factor, list ):
|
||||
...
|
||||
"""
|
||||
|
||||
def forward(
|
||||
self,
|
||||
|
@ -974,93 +1014,7 @@ class Base(nn.Module):
|
|||
|
||||
# compute loss if the target is given
|
||||
if training:
|
||||
if not self.config.loss_factors:
|
||||
target_list = self.training_targets( inputs )
|
||||
|
||||
# modify only for the AR so it can properly behave like a transformer
|
||||
for i in range(len(target_list)):
|
||||
if quant_levels is not None and quant_levels[i] > 0:
|
||||
continue
|
||||
|
||||
logits[i] = logits[i][..., :-1, :] # shift the target so that token n...
|
||||
target_list[i] = target_list[i][..., 1:] # predicts token n + 1
|
||||
|
||||
target = torch.cat( target_list )
|
||||
inputs = torch.cat( logits )
|
||||
|
||||
self.loss = dict(
|
||||
# "nll" was in the original implementation and should actually just be called something else
|
||||
nll = F.cross_entropy( inputs, target, ignore_index=self.ignore_index )
|
||||
)
|
||||
self.stats = dict(
|
||||
acc = self.accuracy_metric( inputs, target ),
|
||||
# precision = self.precision_metric( inputs, target ),
|
||||
)
|
||||
# split our loss
|
||||
# to-do: clean this up
|
||||
else:
|
||||
target_text_list, target_prom_list, target_resp_list = self.training_targets_split( inputs, quant_levels )
|
||||
|
||||
logits_text = []
|
||||
logits_prom = []
|
||||
logits_resp = []
|
||||
|
||||
# trim logits to each section
|
||||
for i, logit in enumerate(logits):
|
||||
text_len = target_text_list[i].shape[0]
|
||||
prom_len = target_prom_list[i].shape[0]
|
||||
resp_len = target_resp_list[i].shape[0]
|
||||
|
||||
logits_text.append( logit[:text_len] )
|
||||
logits_prom.append( logit[text_len+1:text_len+1+prom_len] ) # + 1 to include separator
|
||||
logits_resp.append( logit[-resp_len:] )
|
||||
|
||||
|
||||
# modify only for the AR so it can properly behave like a transformer
|
||||
for i in range(len(target_text_list)):
|
||||
if quant_levels is not None and quant_levels[i] > 0:
|
||||
continue
|
||||
|
||||
# shift the target so that token n...
|
||||
logits_text[i] = logits_text[i][..., :-1, :]
|
||||
logits_prom[i] = logits_prom[i][..., :-1, :]
|
||||
logits_resp[i] = logits_resp[i][..., :-1, :]
|
||||
|
||||
# predicts token n + 1
|
||||
target_text_list[i] = target_text_list[i][..., 1:]
|
||||
target_prom_list[i] = target_prom_list[i][..., 1:]
|
||||
target_resp_list[i] = target_resp_list[i][..., 1:]
|
||||
|
||||
self.loss = dict()
|
||||
self.stats = dict(acc = dict())
|
||||
|
||||
loss_factor_text = self.loss_factor("text")
|
||||
if loss_factor_text > 0.0 and target_text_list:
|
||||
target_text = torch.cat( target_text_list ).long()
|
||||
inputs_text = torch.cat( logits_text )
|
||||
self.loss["text"] = F.cross_entropy( inputs_text, target_text, ignore_index=self.ignore_index ) * loss_factor_text
|
||||
self.stats["acc"]["text"] = self.accuracy_metric( inputs_text, target_text )
|
||||
|
||||
loss_factor_prom = self.loss_factor("prom")
|
||||
if loss_factor_prom > 0.0 and target_prom_list:
|
||||
target_prom = torch.cat( target_prom_list ).long()
|
||||
inputs_prom = torch.cat( logits_prom )
|
||||
self.loss["prom"] = F.cross_entropy( inputs_prom, target_prom, ignore_index=self.ignore_index ) * loss_factor_prom
|
||||
self.stats["acc"]["prom"] = self.accuracy_metric( inputs_prom, target_prom )
|
||||
|
||||
loss_factor_resp = self.loss_factor("resp")
|
||||
if loss_factor_resp > 0.0 and target_resp_list:
|
||||
target_resp = torch.cat( target_resp_list ).long()
|
||||
inputs_resp = torch.cat( logits_resp )
|
||||
self.loss["resp"] = F.cross_entropy( inputs_resp, target_resp, ignore_index=self.ignore_index ) * loss_factor_resp
|
||||
self.stats["acc"]["resp"] = self.accuracy_metric( inputs_resp, target_resp )
|
||||
|
||||
# to-do: compute loss per individual batch to scale per RVQ level
|
||||
"""
|
||||
rvq_loss_factor = self.loss_factor("quant")
|
||||
if isinstance( rvq_loss_factor, list ):
|
||||
...
|
||||
"""
|
||||
self.calc_loss( inputs=inputs, logits=logits, quant_levels=quant_levels )
|
||||
|
||||
# include any additional losses (for example: MoE router)
|
||||
if aux_loss is not None:
|
||||
|
|
Loading…
Reference in New Issue
Block a user