move layerskip to experimental settings.......
This commit is contained in:
parent
d5aa8186f0
commit
e58a9469a3
|
@ -33,6 +33,16 @@ This script implements the core underlying model for VALL-E. This handle:
|
||||||
|
|
||||||
This script aims to implement everything as required per VALL-E agnostically, to allow for different implementations to contain little extra code.
|
This script aims to implement everything as required per VALL-E agnostically, to allow for different implementations to contain little extra code.
|
||||||
|
|
||||||
|
### Tasks
|
||||||
|
|
||||||
|
The base model handles processing inputs into token sequences, per the requested task assigned to each input in a batch.
|
||||||
|
|
||||||
|
Most sequences follow a `<text><RVQ level><language><prompt><output>` sequence, but some tasks will receive the prompt as a list of tensors, instead.
|
||||||
|
|
||||||
|
The length predictor `len` task will naively output the length in base-10 followed by a stop token.
|
||||||
|
|
||||||
|
Speech-To-Text will follow a reverse sequence of `<audio><language><RVQ level><output>`.
|
||||||
|
|
||||||
## `models/ar_nar.py`
|
## `models/ar_nar.py`
|
||||||
|
|
||||||
This script implements VALL-E as a unified autoregressive and non-autoregressive model, where RVQ-level 0 is inferenced autoregressively, the remaining levels are infereneced non-autoregressively.
|
This script implements VALL-E as a unified autoregressive and non-autoregressive model, where RVQ-level 0 is inferenced autoregressively, the remaining levels are infereneced non-autoregressively.
|
||||||
|
|
|
@ -402,8 +402,6 @@ with ui:
|
||||||
layout["inference_tts"]["inputs"]["ar-temp"] = gr.Slider(value=0.5, minimum=0.0, maximum=1.5, step=0.05, label="Temperature (AR)", info="Modifies the randomness from the samples in the AR. (0 to greedy* sample)")
|
layout["inference_tts"]["inputs"]["ar-temp"] = gr.Slider(value=0.5, minimum=0.0, maximum=1.5, step=0.05, label="Temperature (AR)", info="Modifies the randomness from the samples in the AR. (0 to greedy* sample)")
|
||||||
layout["inference_tts"]["inputs"]["nar-temp"] = gr.Slider(value=0.0, minimum=0.0, maximum=1.5, step=0.05, label="Temperature (NAR)", info="Modifies the randomness from the samples in the NAR. (0 to greedy sample)")
|
layout["inference_tts"]["inputs"]["nar-temp"] = gr.Slider(value=0.0, minimum=0.0, maximum=1.5, step=0.05, label="Temperature (NAR)", info="Modifies the randomness from the samples in the NAR. (0 to greedy sample)")
|
||||||
with gr.Row():
|
with gr.Row():
|
||||||
layout["inference_tts"]["inputs"]["layer-skip"] = gr.Checkbox(label="Layer Skip", info="Performs self-speculative early exit 'sampling'")
|
|
||||||
layout["inference_tts"]["inputs"]["refine-on-stop"] = gr.Checkbox(label="Refine on <stop>", info="Uses the last step's logits for the AR sequence instead.")
|
|
||||||
layout["inference_tts"]["inputs"]["language"] = gr.Dropdown(choices=get_languages(), label="Language", value="en")
|
layout["inference_tts"]["inputs"]["language"] = gr.Dropdown(choices=get_languages(), label="Language", value="en")
|
||||||
with gr.Tab("Sampler Settings"):
|
with gr.Tab("Sampler Settings"):
|
||||||
with gr.Row():
|
with gr.Row():
|
||||||
|
@ -432,6 +430,9 @@ with ui:
|
||||||
with gr.Row():
|
with gr.Row():
|
||||||
layout["inference_tts"]["inputs"]["dynamic-sampling"] = gr.Checkbox(label="Dynamic Temperature", info="Dynamically adjusts the temperature based on the highest confident predicted token per sampling step.")
|
layout["inference_tts"]["inputs"]["dynamic-sampling"] = gr.Checkbox(label="Dynamic Temperature", info="Dynamically adjusts the temperature based on the highest confident predicted token per sampling step.")
|
||||||
layout["inference_tts"]["inputs"]["entropix-sampling"] = gr.Checkbox(label="Entropix Sampling", info="Dynamically samples based on entropy/varentropy values from the logits / attention scores.")
|
layout["inference_tts"]["inputs"]["entropix-sampling"] = gr.Checkbox(label="Entropix Sampling", info="Dynamically samples based on entropy/varentropy values from the logits / attention scores.")
|
||||||
|
with gr.Row():
|
||||||
|
layout["inference_tts"]["inputs"]["layer-skip"] = gr.Checkbox(label="Layer Skip", info="Performs self-speculative early exit 'sampling'")
|
||||||
|
layout["inference_tts"]["inputs"]["refine-on-stop"] = gr.Checkbox(label="Refine on <stop>", info="Uses the last step's logits for the AR sequence instead.")
|
||||||
with gr.Row():
|
with gr.Row():
|
||||||
layout["inference_tts"]["inputs"]["layer-skip-exit-layer"] = gr.Slider(value=11, minimum=0, maximum=11, step=1, label="Layer Skip Exit Layer", info="Maximum model layer to exit early from.")
|
layout["inference_tts"]["inputs"]["layer-skip-exit-layer"] = gr.Slider(value=11, minimum=0, maximum=11, step=1, label="Layer Skip Exit Layer", info="Maximum model layer to exit early from.")
|
||||||
layout["inference_tts"]["inputs"]["layer-skip-entropy-threshold"] = gr.Slider(value=0.1, minimum=0, maximum=1.0, step=0.01, label="Layer Skip Entropy Threshold", info="Entropy threshold for early-exit")
|
layout["inference_tts"]["inputs"]["layer-skip-entropy-threshold"] = gr.Slider(value=0.1, minimum=0, maximum=1.0, step=0.01, label="Layer Skip Entropy Threshold", info="Entropy threshold for early-exit")
|
||||||
|
|
Loading…
Reference in New Issue
Block a user