prom_list -> proms_list

This commit is contained in:
enhuiz 2023-01-12 14:11:32 +08:00
parent de59c04c50
commit ea5e438fdb
7 changed files with 74 additions and 34 deletions

Binary file not shown.

Binary file not shown.

Binary file not shown.

View File

@ -0,0 +1,2 @@
from .ar import AR
from .nar import NAR

View File

@ -28,12 +28,12 @@ class AR(Base):
def forward(
self,
text_list: list[Tensor],
prom_list: list[Tensor],
proms_list: list[Tensor],
resp_list: list[Tensor],
):
return super().forward(
text_list,
prom_list,
proms_list,
resp_list,
resp_list,
quant_level=0,
@ -44,7 +44,7 @@ class AR(Base):
def generate(
self,
text_list: list[Tensor],
prom_list: list[Tensor],
proms_list: list[Tensor],
max_steps: int = 1000,
):
device = text_list[0].device
@ -53,7 +53,7 @@ class AR(Base):
]
stopped = [False] * len(text_list)
for _ in trange(max_steps):
r = super().forward(text_list, prom_list, resp_list)
r = super().forward(text_list, proms_list, resp_list)
for i, ri in enumerate(r):
if ri.item() == self.stop_token:
stopped[i] = True
@ -65,7 +65,10 @@ class AR(Base):
def example_usage():
from functools import partial
import soundfile
from einops import repeat
device = "cuda"
@ -79,9 +82,10 @@ def example_usage():
torch.tensor([2, 3], device=device),
]
prom_list = [
torch.tensor([1, 2, 3], device=device),
torch.tensor([2, 3], device=device),
x8 = partial(repeat, pattern="t -> t q", q=8)
proms_list = [
x8(torch.tensor([1, 2, 3], device=device)),
x8(torch.tensor([2, 3], device=device)),
]
resp_list = [
@ -91,7 +95,7 @@ def example_usage():
out = model.generate(
text_list,
prom_list,
proms_list,
max_steps=200,
)
@ -101,7 +105,7 @@ def example_usage():
for i in range(100):
optimizer.zero_grad()
_ = model(text_list, prom_list, resp_list)
_ = model(text_list, proms_list, resp_list)
losses = model.loss
sum(losses.values()).backward()
@ -110,7 +114,7 @@ def example_usage():
if i % 20 == 0:
print(f"iter={i}, {losses}.")
out = model.generate(text_list, prom_list, max_steps=200)
out = model.generate(text_list, proms_list, max_steps=200)
print(qnt)
print(out)

View File

@ -178,10 +178,28 @@ class Block(nn.Sequential):
class Embedding(nn.Embedding):
def forward(self, x: list[Tensor]) -> list[Tensor]:
if len(x) == 0:
def forward(self, x_list: list[Tensor]) -> list[Tensor]:
if len(x_list) == 0:
return []
return super().forward(torch.cat(x)).split([*map(len, x)])
return super().forward(torch.cat(x_list)).split([*map(len, x_list)])
class MultiEmbedding(nn.Module):
def __init__(self, num_embeddings, embedding_dim, n_levels):
super().__init__()
self.n_levels = n_levels
self.num_embeddings = num_embeddings
self.emb = nn.Embedding(n_levels * num_embeddings, embedding_dim)
def forward(self, x_list: list[Tensor]) -> list[Tensor]:
if len(x_list) == 0:
return []
x = torch.cat(x_list)
assert x.shape[1] == self.n_levels
w = rearrange(self.emb.weight, "(q k) d -> q k d", q=self.n_levels)
x = F.one_hot(x, num_classes=self.num_embeddings).float() # n q -> n q k
x = einsum("q k d, n q k -> n d", w, x)
return x.split([*map(len, x_list)])
def _join(x: tuple[Tensor], sep: Tensor):
@ -216,6 +234,8 @@ class Base(nn.Module):
n_heads: int = 8,
n_layers: int = 12,
p_dropout: float = 0.1,
n_prom_levels: int = 8,
resp_loss_only: bool = False,
):
super().__init__()
self.n_tokens = n_tokens
@ -227,7 +247,10 @@ class Base(nn.Module):
n_resp_tokens = n_tokens + n_stop_tokens
self.text_emb = Embedding(n_tokens, d_model)
self.prom_emb = Embedding(n_tokens, d_model)
# It's not clear whether the whole prom are used or only the first level quantization
# Just use all of them as it is more sufficient and we don't need to sample it, or do we?
self.prom_emb = MultiEmbedding(n_tokens, d_model, n_levels=n_prom_levels)
# +1 to include the stop token
self.resp_embs = nn.ModuleList(
@ -243,6 +266,8 @@ class Base(nn.Module):
self.classifier = nn.Linear(d_model, n_resp_tokens)
self.resp_loss_only = resp_loss_only
@property
def stop_token(self):
if not self.use_stop_token:
@ -265,7 +290,7 @@ class Base(nn.Module):
def forward(
self,
text_list: list[Tensor],
prom_list: list[Tensor],
proms_list: list[Tensor],
resp_list: list[Tensor],
targ_list: list[Tensor] | None = None,
quant_level: int = 0,
@ -278,7 +303,7 @@ class Base(nn.Module):
def forward(
self,
text_list: list[Tensor],
prom_list: list[Tensor],
proms_list: list[Tensor],
resp_list: list[Tensor],
targ_list: list[Tensor] | None = None,
quant_level: int = 0,
@ -290,7 +315,7 @@ class Base(nn.Module):
def forward(
self,
text_list: list[Tensor],
prom_list: list[Tensor],
proms_list: list[Tensor],
resp_list: list[Tensor],
targ_list: list[Tensor] | None = None,
quant_level: int = 0,
@ -300,7 +325,7 @@ class Base(nn.Module):
"""
Args:
text_list: [t] * b
prom_list: [t'] * b
proms_list: [t' k] * b
resp_list: [t''] * b, one quantization level only
targ_list: [t''] * b, one quantization level only, when given, loss will be computed
quant_level: specify which quant_level to feed forward, used in NAR mode.
@ -311,7 +336,7 @@ class Base(nn.Module):
"""
x_list = self._samplewise_merge_tensors(
self.text_emb(text_list),
self.prom_emb(prom_list),
self.prom_emb(proms_list),
self.resp_embs[quant_level](resp_list),
sep=self.sep,
)
@ -334,14 +359,21 @@ class Base(nn.Module):
device = h.device
ignore_sep = torch.tensor(self.ignore_index, device=device)
# Predict the first level prom
prom_list = [t[..., 0] for t in proms_list]
text_prom_list = self._samplewise_merge_tensors(
text_list, prom_list, sep=ignore_sep
)
# Make every token earlier as it is future that is unknown
# If we don't want compute loss, set all to ignored
for i in range(len(text_prom_list)):
text_prom_list[i] = text_prom_list[i].roll(-1, dims=0)
text_prom_list[i][-1] = self.ignore_index
if self.resp_loss_only:
text_prom_list[i][:] = self.ignore_index
else:
text_prom_list[i] = text_prom_list[i].roll(-1, dims=0)
text_prom_list[i][-1] = self.ignore_index
if shift_targ_list:
# Also make target earlier if in autoregressive mode

View File

@ -21,7 +21,7 @@ class NAR(Base):
def forward(
self,
text_list: list[Tensor],
prom_list: list[Tensor],
proms_list: list[Tensor],
*,
resp_list: list[Tensor] | None = None,
resps_list: list[Tensor] | None = None,
@ -29,7 +29,7 @@ class NAR(Base):
"""
Args:
text_list: [t] * b
prom_list: [t'] * b
proms_list: [t' k] * b
resp_list: [t'] * b, quants at level 0.
resps_list: [t''] * b, 8 quantization levels for training.
Returns:
@ -52,7 +52,7 @@ class NAR(Base):
for i in range(self.n_levels):
hyp_resp_list = super().forward(
text_list,
prom_list,
proms_list,
hyp_resp_lists[-1],
return_all_resp=True,
shift_targ_list=False,
@ -70,7 +70,7 @@ class NAR(Base):
next_resp_list = [o[..., i + 1] for o in resps_list]
hyp_resp_list = super().forward(
text_list,
prom_list,
proms_list,
resp_list,
next_resp_list,
return_all_resp=True,
@ -90,7 +90,10 @@ class NAR(Base):
def example_usage():
from functools import partial
import soundfile
from einops import repeat
from ..emb.qnt import decode
from ..utils import gather_attribute
@ -107,9 +110,10 @@ def example_usage():
torch.tensor([2, 3], device=device),
]
prom_list = [
torch.tensor([1, 2, 3], device=device),
torch.tensor([2, 3], device=device),
x8 = partial(repeat, pattern="t -> t q", q=8)
proms_list = [
x8(torch.tensor([1, 2, 3], device=device)),
x8(torch.tensor([2, 3], device=device)),
]
resp_list = [
@ -118,13 +122,11 @@ def example_usage():
]
resps_list = [
torch.tensor([1, 2, 3], device=device)
.unsqueeze(-1)
.repeat_interleave(8, dim=-1),
x8(torch.tensor([1, 2, 3], device=device)),
resps.t().to(device),
]
out = model(text_list, prom_list, resp_list=resp_list)
out = model(text_list, proms_list, resp_list=resp_list)
codes = rearrange(out[1], "t k -> 1 k t")
print(codes)
wavs, sr = decode(codes)
@ -134,7 +136,7 @@ def example_usage():
for i in range(100):
optimizer.zero_grad()
_ = model(text_list, prom_list, resps_list=resps_list)
_ = model(text_list, proms_list, resps_list=resps_list)
losses = gather_attribute(model, "loss")
loss = sum(losses.values())
@ -146,7 +148,7 @@ def example_usage():
stats["loss"] = loss.item()
print(f"iter={i}, {stats}.")
out = model(text_list, prom_list, resp_list=resp_list)
out = model(text_list, proms_list, resp_list=resp_list)
codes = rearrange(out[1], "t k -> 1 k t")
wavs, sr = decode(codes)
soundfile.write("data/test/test.nar.recon.wav", wavs.cpu()[0, 0], sr)