busy work and cleanup while I wait for 1TB of audio to quantize... again.

This commit is contained in:
mrq 2024-08-06 20:23:33 -05:00
parent f284c7ea9c
commit eac353cd0b
6 changed files with 269 additions and 139 deletions

View File

@ -58,13 +58,13 @@ If you already have a dataset you want, for example, your own large corpus or fo
1. Populate your source voices under `./voices/{group name}/{speaker name}/`.
2. Run `python3 ./scripts/transcribe_dataset.py`. This will generate a transcription with timestamps for your dataset.
2. Run `python3 -m vall_e.emb.transcribe`. This will generate a transcription with timestamps for your dataset.
+ If you're interested in using a different model, edit the script's `model_name` and `batch_size` variables.
3. Run `python3 ./scripts/process_dataset.py`. This will phonemize the transcriptions and quantize the audio.
3. Run `python3 -m vall_e.emb.process`. This will phonemize the transcriptions and quantize the audio.
+ If you're using a Descript-Audio-Codec based model, ensure to set the sample rate and audio backend accordingly.
4. Copy `./data/config.yaml` to `./training/config.yaml`. Customize the training configuration and populate your `dataset.training` list with the values stored under `./training/dataset_list.json`.
4. Copy `./data/config.yaml` to `./training/config.yaml`. Customize the training configuration and populate your `dataset.training` list with the values stored under `./training/dataset/list.json`.
+ Refer to `./vall_e/config.py` for additional configuration details.
### Dataset Formats

View File

@ -157,6 +157,8 @@ class Dataset:
max_resps: int = 1 # number of samples to target for training
p_resp_append: float = 1.0 # probability to append another sample to the training target
p_resp_pad_silence: float = 0.0 # probability to pad resp with silence to fit within the next window
sample_type: str = "path" # path | speaker
sample_order: str = "interleaved" # duration
sample_max_duration_batch: float = 0.0 # total number of seconds of utterances per batched, 0 to disable
@ -177,11 +179,8 @@ class Dataset:
return self._frames_per_second
if cfg.audio_backend == "dac":
# using the 44KHz model with 24KHz sources has a frame rate of 41Hz
if cfg.variable_sample_rate and cfg.sample_rate == 24_000:
return 41
if cfg.sample_rate == 44_000 or cfg.sample_rate == 44_100: # to-do: find the actual value for 44.1K
return 86
if cfg.sample_rate == 44_100:
return 87
if cfg.sample_rate == 16_000:
return 50
@ -712,14 +711,40 @@ class Config(BaseConfig):
tokenizer_path: str = "./tokenizer.json" # tokenizer path
sample_rate: int = 24_000 # sample rate the model expects
variable_sample_rate: bool = False # NOT recommended, as running directly 24Khz audio in the 44Khz DAC model will have detrimental quality loss
audio_backend: str = "vocos" # audio backend to use "encodec" | "vocos" | "dac""
weights_format: str = "pth" # "pth" | "sft"
supported_weights_formats: list[str] = field(default_factory=lambda: ["sft", "safetensors", "pt", "pth"])
def set_audio_backend(self, audio_backend):
cfg.audio_backend = audio_backend
audio_extension = None
if audio_backend in ["encodec", "vocos"]:
audio_extension = ".enc"
cfg.sample_rate = 24_000
cfg.model.resp_levels = 8
elif audio_backend == "dac":
audio_extension = ".dac"
cfg.sample_rate = 44_100
cfg.model.resp_levels = 9
elif cfg.audio_backend == "audiodec":
audio_extension = ".dec"
sample_rate = 48_000
cfg.model.resp_levels = 8 # ?
else:
raise Exception(f"Unknown audio backend: {audio_backend}")
@property
def audio_backend_extension(self):
audio_extension = None
if self.audio_backend in ["encodec", "vocos"]:
audio_extension = ".enc"
elif self.audio_backend == "dac":
audio_extension = ".dac"
elif self.audio_backend == "audiodec":
audio_extension = ".dec"
return audio_extension
@property
def model(self):
for i, model in enumerate(self.models):

View File

@ -11,7 +11,7 @@ import torch
import itertools
from .config import cfg
from .emb.qnt import trim, trim_random, repeat_extend_audio, concat_audio, merge_audio, decode_to_file, decode as decode_qnt, encode as encode_qnt
from .emb.qnt import trim, trim_random, repeat_extend_audio, concat_audio, merge_audio, decode_to_file, decode as decode_qnt, encode as encode_qnt, pad_codes_with_silence
from .utils.sampler import PoolSampler, OrderedSampler, BatchedOrderedSampler, RandomSampler
from .utils.distributed import global_rank, local_rank, world_size
from .utils.io import torch_save, torch_load
@ -368,7 +368,9 @@ def get_phone_symmap():
return cfg.tokenizer.get_vocab()
def tokenize( phones ):
return cfg.tokenizer.encode( "".join(phones) )
if isinstance( phones, list ):
phones = "".join( phones )
return cfg.tokenizer.encode( phones )
def get_lang_symmap():
return {
@ -1146,6 +1148,10 @@ class Dataset(_Dataset):
if text is None:
text = torch.tensor([bos_id, eos_id]).to(self.text_dtype)
# pad the target with silence
if p_resp_pad_silence < random.random():
resps = pad_codes_with_silence( resps )
return dict(
index=index,
path=Path(path),

View File

@ -54,17 +54,29 @@ def encode(text: str, language="en-us", backend="auto", punctuation=True, stress
if not backend or backend == "auto":
backend = "espeak" # if language[:2] != "en" else "festival"
text = [ text ]
backend = _get_backend(language=language, backend=backend, stress=stress, strip=strip, punctuation=punctuation)
if backend is not None:
tokens = backend.phonemize( text, strip=strip )
tokens = backend.phonemize( [ text ], strip=strip )
else:
tokens = phonemize( text, language=language, strip=strip, preserve_punctuation=punctuation, with_stress=stress )
tokens = phonemize( [ text ], language=language, strip=strip, preserve_punctuation=punctuation, with_stress=stress )
if not len(tokens):
tokens = []
else:
tokens = list(tokens[0])
raise Exception(f"Failed to phonemize, received empty string: {text}")
return tokens
return tokens[0]
# Helper function to debug phonemizer
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("string", type=str)
parser.add_argument("--language", type=str, default="en-us")
parser.add_argument("--backend", type=str, default="auto")
parser.add_argument("--no-punctuation", action="store_true")
parser.add_argument("--no-stress", action="store_true")
parser.add_argument("--no-strip", action="store_true")
args = parser.parse_args()
phonemes = encode( args.string, language=args.language, backend=args.backend, punctuation=not args.no_punctuation, stress=not args.no_stress, strip=not args.no_strip )
print( phonemes )

View File

@ -17,7 +17,7 @@ from ..config import cfg
# need to validate if this is safe to import before modifying the config
from .g2p import encode as phonemize
from .qnt import encode as quantize, _replace_file_extension
from .qnt import encode as quantize
def pad(num, zeroes):
return str(num).zfill(zeroes+1)
@ -33,12 +33,11 @@ def process_items( items, stride=0, stride_offset=0 ):
items = sorted( items )
return items if stride == 0 else [ item for i, item in enumerate( items ) if (i+stride_offset) % stride == 0 ]
def process_job( outpath, text, language, waveform, sample_rate ):
phones = phonemize(text, language=language)
def process_job( outpath, waveform, sample_rate, text=None, language="en" ):
qnt = quantize(waveform, sr=sample_rate, device=waveform.device)
if cfg.audio_backend == "dac":
np.save(open(outpath, "wb"), {
state_dict = {
"codes": qnt.codes.cpu().numpy().astype(np.uint16),
"metadata": {
"original_length": qnt.original_length,
@ -49,33 +48,35 @@ def process_job( outpath, text, language, waveform, sample_rate ):
"channels": qnt.channels,
"padding": qnt.padding,
"dac_version": "1.0.0",
"text": text.strip(),
"phonemes": "".join(phones),
"language": language,
},
})
}
else:
np.save(open(outpath, "wb"), {
state_dict = {
"codes": qnt.cpu().numpy().astype(np.uint16),
"metadata": {
"original_length": waveform.shape[-1],
"sample_rate": sample_rate,
"text": text.strip(),
"phonemes": "".join(phones),
"language": language,
},
})
}
if text:
text = text.strip()
state_dict['metadata'] |= {
"text": text,
"phonemes": phonemize(text, language=language),
"language": language,
}
np.save(open(outpath, "wb"), state_dict)
def process_jobs( jobs, speaker_id="", raise_exceptions=True ):
if not jobs:
return
for job in tqdm(jobs, desc=f"Quantizing: {speaker_id}"):
outpath, text, language, waveform, sample_rate = job
outpath, waveform, sample_rate, text, language = job
try:
process_job( outpath, text, language, waveform, sample_rate )
process_job( outpath, waveform, sample_rate, text, language )
except Exception as e:
print(f"Failed to quantize: {outpath}:", e)
if raise_exceptions:
@ -98,30 +99,16 @@ def process(
dtype="float16",
amp=False,
):
# encodec / vocos
if audio_backend in ["encodec", "vocos"]:
audio_extension = ".enc"
cfg.sample_rate = 24_000
cfg.model.resp_levels = 8
elif audio_backend == "dac":
audio_extension = ".dac"
cfg.sample_rate = 44_100
cfg.model.resp_levels = 9
elif cfg.audio_backend == "audiodec":
sample_rate = 48_000
audio_extension = ".dec"
cfg.model.resp_levels = 8 # ?
else:
raise Exception(f"Unknown audio backend: {audio_backend}")
# prepare from args
cfg.audio_backend = audio_backend # "encodec"
cfg.set_audio_backend(args.audio_backend)
audio_extension = cfg.audio_backend_extension
cfg.inference.weight_dtype = dtype # "bfloat16"
cfg.inference.amp = amp # False
output_dataset = f"{output_dataset}/{'2' if cfg.sample_rate == 24_000 else '4'}{'8' if cfg.sample_rate == 48_000 else '4'}KHz-{cfg.audio_backend}" # "training"
# to-do: make this also prepared from args
language_map = {} # k = group, v = language
ignore_groups = [] # skip these groups
@ -164,8 +151,7 @@ def process(
if speaker_id in audio_only:
for filename in sorted(os.listdir(f'./{input_audio}/{group_name}/{speaker_id}/')):
inpath = Path(f'./{input_audio}/{group_name}/{speaker_id}/{filename}')
outpath = Path(f'./{output_dataset}/{group_name}/{speaker_id}/{filename}')
outpath = _replace_file_extension(outpath, audio_extension)
outpath = Path(f'./{output_dataset}/{group_name}/{speaker_id}/{filename}').with_suffix(audio_extension)
if outpath.exists():
continue
@ -173,28 +159,7 @@ def process(
waveform, sample_rate = load_audio( inpath, device )
qnt = quantize(waveform, sr=sample_rate, device=device)
if cfg.audio_backend == "dac":
np.save(open(outpath, "wb"), {
"codes": qnt.codes.cpu().numpy().astype(np.uint16),
"metadata": {
"original_length": qnt.original_length,
"sample_rate": qnt.sample_rate,
"input_db": qnt.input_db.cpu().numpy().astype(np.float32),
"chunk_length": qnt.chunk_length,
"channels": qnt.channels,
"padding": qnt.padding,
"dac_version": "1.0.0",
},
})
else:
np.save(open(outpath, "wb"), {
"codes": qnt.cpu().numpy().astype(np.uint16),
"metadata": {
"original_length": waveform.shape[-1],
"sample_rate": sample_rate,
},
})
process_job(outpath, waveform, sample_rate)
continue
@ -229,8 +194,7 @@ def process(
language = language_map[group_name] if group_name in language_map else (metadata[filename]["language"] if "language" in metadata[filename] else "en")
if len(metadata[filename]["segments"]) == 0 or not use_slices:
outpath = Path(f'./{output_dataset}/{group_name}/{speaker_id}/{fname}.{extension}')
outpath = _replace_file_extension(outpath, audio_extension)
outpath = Path(f'./{output_dataset}/{group_name}/{speaker_id}/{fname}.{extension}').with_suffix(audio_extension)
text = metadata[filename]["text"]
if len(text) == 0 or outpath.exists():
@ -240,15 +204,14 @@ def process(
if waveform is None:
waveform, sample_rate = load_audio( inpath, device )
jobs.append(( outpath, text, language, waveform, sample_rate ))
jobs.append(( outpath, waveform, sample_rate, text, language ))
else:
i = 0
for segment in metadata[filename]["segments"]:
id = pad(i, 4)
i = i + 1
outpath = Path(f'./{output_dataset}/{group_name}/{speaker_id}/{fname}_{id}.{extension}')
outpath = _replace_file_extension(outpath, audio_extension)
outpath = Path(f'./{output_dataset}/{group_name}/{speaker_id}/{fname}_{id}.{extension}').with_suffix(audio_extension)
text = segment["text"]
if len(text) == 0 or outpath.exists():
@ -269,7 +232,7 @@ def process(
if end - start < 0:
continue
jobs.append(( outpath, text, language, waveform[:, start:end], sample_rate ))
jobs.append(( outpath, waveform[:, start:end], sample_rate, text, language ))
# processes audio files one at a time
if low_memory:

View File

@ -2,8 +2,10 @@ from ..config import cfg
import argparse
import random
import math
import torch
import torchaudio
import numpy as np
from functools import cache
from pathlib import Path
@ -215,9 +217,12 @@ except Exception as e:
"""
@cache
def _load_encodec_model(device="cuda", levels=cfg.model.max_levels):
def _load_encodec_model(device="cuda", levels=0):
assert cfg.sample_rate == 24_000
if not levels:
levels = cfg.model.max_levels
# too lazy to un-if ladder this shit
bandwidth_id = 6.0
if levels == 2:
@ -243,9 +248,12 @@ def _load_encodec_model(device="cuda", levels=cfg.model.max_levels):
return model
@cache
def _load_vocos_model(device="cuda", levels=cfg.model.max_levels):
def _load_vocos_model(device="cuda", levels=0):
assert cfg.sample_rate == 24_000
if not levels:
levels = cfg.model.max_levels
model = Vocos.from_pretrained("charactr/vocos-encodec-24khz")
model = model.to(device)
model = model.eval()
@ -267,32 +275,27 @@ def _load_vocos_model(device="cuda", levels=cfg.model.max_levels):
return model
@cache
def _load_dac_model(device="cuda", levels=cfg.model.max_levels):
def _load_dac_model(device="cuda"):
kwargs = dict(model_type="44khz",model_bitrate="8kbps",tag="latest")
if not cfg.variable_sample_rate:
# yes there's a better way, something like f'{cfg.sample.rate//1000}hz'
if cfg.sample_rate == 44_000 or cfg.sample_rate == 44_100: # because I messed up and had assumed it was an even 44K and not 44.1K
kwargs["model_type"] = "44khz"
elif cfg.sample_rate == 16_000:
kwargs["model_type"] = "16khz"
else:
raise Exception(f'unsupported sample rate: {cfg.sample_rate}')
# yes there's a better way, something like f'{cfg.sample.rate//1000}hz'
if cfg.sample_rate == 44_100:
kwargs["model_type"] = "44khz"
elif cfg.sample_rate == 16_000:
kwargs["model_type"] = "16khz"
else:
raise Exception(f'unsupported sample rate: {cfg.sample_rate}')
model = __load_dac_model(**kwargs)
model = model.to(device)
model = model.eval()
# to revisit later, but experiments shown that this is a bad idea
if cfg.variable_sample_rate:
model.sample_rate = cfg.sample_rate
model.backend = "dac"
model.model_type = kwargs["model_type"]
return model
@cache
def _load_audiodec_model(device="cuda", model_name=None, levels=cfg.model.max_levels):
def _load_audiodec_model(device="cuda", model_name=None):
if not model_name:
model_name = "libritts_v1" if cfg.sample_rate == 24_000 else "vctk_v1"
sample_rate, encoder_checkpoint, decoder_checkpoint = _audiodec_assign_model(model_name)
@ -307,25 +310,25 @@ def _load_audiodec_model(device="cuda", model_name=None, levels=cfg.model.max_le
return model
@cache
def _load_model(device="cuda", backend=None, levels=cfg.model.max_levels):
def _load_model(device="cuda", backend=None):
if not backend:
backend = cfg.audio_backend
if backend == "audiodec":
return _load_audiodec_model(device, levels=levels)
return _load_audiodec_model(device)
if backend == "dac":
return _load_dac_model(device, levels=levels)
return _load_dac_model(device)
if backend == "vocos":
return _load_vocos_model(device, levels=levels)
return _load_vocos_model(device)
return _load_encodec_model(device, levels=levels)
return _load_encodec_model(device)
def unload_model():
_load_model.cache_clear()
_load_encodec_model.cache_clear() # because vocos can only decode
@torch.inference_mode()
def decode(codes: Tensor, device="cuda", levels=cfg.model.max_levels, metadata=None):
def decode(codes: Tensor, device="cuda", metadata=None, window_duration=None):
# upcast so it won't whine
if codes.dtype == torch.int8 or codes.dtype == torch.int16 or codes.dtype == torch.uint8:
codes = codes.to(torch.int32)
@ -342,7 +345,7 @@ def decode(codes: Tensor, device="cuda", levels=cfg.model.max_levels, metadata=N
assert codes.dim() == 3, f'Requires shape (b q t) but got {codes.shape}'
# load the model
model = _load_model(device, levels=levels)
model = _load_model(device)
# AudioDec uses a different pathway
if model.backend == "audiodec":
@ -356,7 +359,7 @@ def decode(codes: Tensor, device="cuda", levels=cfg.model.max_levels, metadata=N
dummy = False
if metadata is None:
metadata = dict(
chunk_length= codes.shape[-1],
chunk_length=codes.shape[-1],
original_length=0,
input_db=-12,
channels=1,
@ -367,10 +370,11 @@ def decode(codes: Tensor, device="cuda", levels=cfg.model.max_levels, metadata=N
dummy = True
elif hasattr( metadata, "__dict__" ):
metadata = metadata.__dict__
# generate object with copied metadata
artifact = DACFile(
codes = codes,
chunk_length = metadata["chunk_length"],
chunk_length = math.floor(window_duration * cfg.dataset.frames_per_second) if window_duration else metadata["chunk_length"],
original_length = metadata["original_length"],
input_db = metadata["input_db"],
channels = metadata["channels"],
@ -400,8 +404,8 @@ def decode(codes: Tensor, device="cuda", levels=cfg.model.max_levels, metadata=N
return wav, model.sample_rate
# huh
def decode_to_wave(resps: Tensor, device="cuda", levels=cfg.model.max_levels):
return decode(resps, device=device, levels=levels)
def decode_to_wave(resps: Tensor, device="cuda"):
return decode(resps, device=device)
def decode_to_file(resps: Tensor, path: Path, device="cuda"):
wavs, sr = decode(resps, device=device)
@ -471,23 +475,19 @@ def encode_as_embedding(codes: Tensor, quant_level: int = 0, sums=False, device=
raise Exception(f'Currently only DAC is supported')
@torch.inference_mode()
def encode(wav: Tensor, sr: int = cfg.sample_rate, device="cuda", levels=cfg.model.max_levels, return_metadata=True):
def encode(wav: Tensor, sr: int = cfg.sample_rate, device="cuda", return_metadata=True, window_duration=None):
# DAC uses a different pathway
if cfg.audio_backend == "dac":
model = _load_dac_model(device, levels=levels )
model = _load_dac_model( device )
signal = AudioSignal(wav, sample_rate=sr)
if not isinstance(levels, int):
levels = 8 if model.model_type == "24khz" else None
artifact = model.compress(signal, win_duration=None, verbose=False, n_quantizers=levels)
#artifact = model.compress(signal, n_quantizers=levels)
artifact = model.compress(signal, win_duration=window_duration, verbose=False) # , n_quantizers=levels)
#artifact = model.compress(signal)
return artifact.codes if not return_metadata else artifact
# AudioDec uses a different pathway
if cfg.audio_backend == "audiodec":
model = _load_audiodec_model(device, levels=levels )
model = _load_audiodec_model(device)
wav = wav.unsqueeze(0)
wav = convert_audio(wav, sr, model.sample_rate, 1)
wav = wav.to(device)
@ -498,7 +498,7 @@ def encode(wav: Tensor, sr: int = cfg.sample_rate, device="cuda", levels=cfg.mod
return quantized
# vocos does not encode wavs to encodecs, so just use normal encodec
model = _load_encodec_model(device, levels=levels)
model = _load_encodec_model(device)
wav = wav.unsqueeze(0)
wav = convert_audio(wav, sr, model.sample_rate, model.channels)
wav = wav.to(device)
@ -544,6 +544,9 @@ def encode_from_file(path, device="cuda"):
"""
Helper Functions
"""
# DAC "silence": [ 568, 804, 10, 674, 364, 981, 568, 378, 731]
# trims from the start, up to `target`
def trim( qnt, target, reencode=False, device="cuda" ):
length = max( qnt.shape[0], qnt.shape[1] )
@ -613,23 +616,23 @@ def interleave_audio( *args, audio=None ):
return res
# concats two audios together
def concat_audio( *args, reencode=False, device="cuda", levels=cfg.model.max_levels ):
def concat_audio( *args, reencode=False, device="cuda" ):
qnts = [ *args ]
qnts = [ qnt for qnt in qnts if qnt is not None ]
# just naively combine the codes
if not reencode:
return torch.concat( qnts )
decoded = [ decode(qnt, device=device, levels=levels)[0] for qnt in qnts ]
decoded = [ decode(qnt, device=device)[0] for qnt in qnts ]
combined = torch.concat( decoded )
return encode(combined, cfg.sample_rate, device=device, levels=levels)[0].t()
return encode(combined, cfg.sample_rate, device=device)[0].t()
# merges two quantized audios together
# requires re-encoding because there's no good way to combine the waveforms of two audios without relying on some embedding magic
def merge_audio( *args, device="cuda", scale=[], levels=cfg.model.max_levels ):
def merge_audio( *args, device="cuda", scale=[] ):
qnts = [ *args ]
qnts = [ qnt for qnt in qnts if qnt is not None ]
decoded = [ decode(qnt, device=device, levels=levels)[0] for qnt in qnts ]
decoded = [ decode(qnt, device=device)[0] for qnt in qnts ]
# max length
max_length = max([ wav.shape[-1] for wav in decoded ])
@ -646,17 +649,138 @@ def merge_audio( *args, device="cuda", scale=[], levels=cfg.model.max_levels ):
decoded[i] = decoded[i] * scale[i]
combined = sum(decoded) / len(decoded)
return encode(combined, cfg.sample_rate, device=device, levels=levels)[0].t()
return encode(combined, cfg.sample_rate, device=device)[0].t()
"""
# Get framerate for a given audio backend
def get_framerate( backend=None, sample_rate=None ):
if not backend:
backend = cfg.audio_backend
if not sample_rate:
sample_rate = cfg.sample_rate
if backend == "dac":
if sample_rate == 44_100:
return 87
if sample_rate == 16_000:
return 50
# 24Khz Encodec / Vocos and incidentally DAC are all at 75Hz
return 75
# Generates quantized silence
def get_silence( length, device=None, codes=None ):
length = math.floor(length * get_framerate())
if cfg.audio_backend == "dac":
codes = [ 568, 804, 10, 674, 364, 981, 568, 378, 731 ]
else:
codes = [ 62, 424, 786, 673, 622, 986, 570, 948 ]
return torch.tensor([ codes for _ in range( length ) ], device=device, dtype=torch.int16)
# Pads a sequence of codes with silence
def pad_codes_with_silence( codes, size=1 ):
duration = codes.shape[0] * get_framerate()
difference = math.ceil( duration + size ) - duration
silence = get_silence( difference, device=codes.device )
half = math.floor(difference / 2 * get_framerate())
return torch.concat( [ silence[half:, :], codes, silence[:half, :] ], dim=0 )
# Generates an empty waveform
def get_silent_waveform( length, device=None ):
length = math.floor(length * cfg.sample_rate)
return torch.tensor( [ [ 0 for _ in range( length ) ] ], device=device, dtype=torch.float32 )
# Pads a waveform with silence
def pad_waveform_with_silence( waveform, sample_rate, size=1 ):
duration = waveform.shape[-1] / sample_rate
difference = math.ceil( duration + size ) - duration
silence = get_silent_waveform( difference, device=waveform.device )
half = math.floor(difference / 2 * sample_rate)
return torch.concat( [ silence[:, half:], waveform, silence[:, :half] ], dim=-1 )
# Encodes/decodes audio, and helps me debug things
if __name__ == "__main__":
cfg.sample_rate = 48_000
cfg.audio_backend = "audiodec"
parser = argparse.ArgumentParser()
wav, sr = torchaudio.load("in.wav")
codes = encode( wav, sr ).t() # for some reason
print( "ENCODED:", codes.shape, codes )
wav, sr = decode( codes )
print( "DECODED:", wav.shape, wav )
torchaudio.save("out.wav", wav.cpu(), sr)
"""
parser.add_argument("--audio-backend", type=str, default="encodec")
parser.add_argument("--input", type=Path)
parser.add_argument("--output", type=Path, default=None)
parser.add_argument("--device", type=str, default="cuda")
parser.add_argument("--dtype", type=str, default="float16")
parser.add_argument("--window-duration", type=float, default=None) # for DAC, the window duration for encoding / decoding
parser.add_argument("--print", action="store_true") # prints codes and metadata
parser.add_argument("--pad", action="store_true") # to test if padding with silence modifies the waveform / quants too much
args = parser.parse_args()
# prepare from args
cfg.set_audio_backend(args.audio_backend)
audio_extension = cfg.audio_backend_extension
cfg.inference.weight_dtype = args.dtype # "bfloat16"
cfg.inference.amp = args.dtype != "float32"
cfg.device = args.device
# decode
if args.input.suffix == audio_extension:
args.output = args.input.with_suffix('.wav') if not args.output else args.output.with_suffix('.wav')
artifact = np.load(args.input, allow_pickle=True)[()]
codes = torch.from_numpy(artifact['codes'])[0][:, :].t().to(device=cfg.device, dtype=torch.int16)
# pad to nearest
if args.pad:
codes = pad_codes_with_silence( codes )
del artifact['metadata']
waveform, sample_rate = decode( codes, device=cfg.device, metadata=artifact['metadata'] if 'metadata' in artifact else None, window_duration=args.window_duration )
torchaudio.save(args.output, waveform.cpu(), sample_rate)
# print
if args.print:
torch.set_printoptions(profile="full")
print( "Metadata:", artifact['metadata'] )
print( "Codes:", codes.shape, codes )
# encode
else:
args.output = args.input.with_suffix(audio_extension) if not args.output else args.output.with_suffix(audio_extension)
waveform, sample_rate = torchaudio.load(args.input)
# pad to nearest
if args.pad:
waveform = pad_waveform_with_silence( waveform, sample_rate )
qnt = encode(waveform.to(cfg.device), sr=sample_rate, device=cfg.device, window_duration=args.window_duration)
if cfg.audio_backend == "dac":
state_dict = {
"codes": qnt.codes.cpu().numpy().astype(np.uint16),
"metadata": {
"original_length": qnt.original_length,
"sample_rate": qnt.sample_rate,
"input_db": qnt.input_db.cpu().numpy().astype(np.float32),
"chunk_length": qnt.chunk_length,
"channels": qnt.channels,
"padding": qnt.padding,
"dac_version": "1.0.0",
},
}
else:
state_dict = {
"codes": qnt.cpu().numpy().astype(np.uint16),
"metadata": {
"original_length": waveform.shape[-1],
"sample_rate": sample_rate,
},
}
np.save(open(args.output, "wb"), state_dict)