ugh.........

This commit is contained in:
mrq 2024-10-13 00:26:46 -05:00
parent d405f243d4
commit ed6b7a690f

View File

@ -148,79 +148,6 @@ class LlamaAttention_Adapted(LlamaAttention):
super().__init__(*args, **kwargs) super().__init__(*args, **kwargs)
# Adapted from LlamaAttention.forward, this doesn't seem to give great output......
def _forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.45
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
dropout_rate = self.attention_dropout if self.training else 0.0
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
if position_embeddings is None:
cos, sin = self.rotary_emb(value_states, position_ids)
else:
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_value is not None:
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
attn_scores = attn_weights
if attention_mask is not None: # no matter the length, we just slice it
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
attn_weights = attn_weights + causal_mask
# upcast attention to fp32
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
attn_output = torch.matmul(attn_weights, value_states)
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(bsz, q_len, -1)
if self.config.pretraining_tp > 1:
attn_output = attn_output.split(self.hidden_size // self.config.pretraining_tp, dim=2)
o_proj_slices = self.o_proj.weight.split(self.hidden_size // self.config.pretraining_tp, dim=1)
attn_output = sum([F.linear(attn_output[i], o_proj_slices[i]) for i in range(self.config.pretraining_tp)])
else:
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
attn_scores = None
return attn_output, attn_scores, past_key_value
# Adapted from LlamaAttention.forward # Adapted from LlamaAttention.forward
def forward( def forward(
self, self,
@ -234,19 +161,7 @@ class LlamaAttention_Adapted(LlamaAttention):
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.45 position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.45
**kwargs, **kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
if not self.mode: mode = "default" if output_attentions else self.mode
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
return self._forward(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
)
dropout_rate = self.attention_dropout if self.training else 0.0 dropout_rate = self.attention_dropout if self.training else 0.0
bsz, q_len, _ = hidden_states.size() bsz, q_len, _ = hidden_states.size()
@ -269,10 +184,7 @@ class LlamaAttention_Adapted(LlamaAttention):
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
if self.mode in ["xformers", "flash_attn"]: if mode in ["xformers", "flash_attn"]:
if output_attentions:
attn_scores = torch.matmul(query_states, repeat_kv(key_states, self.num_key_value_groups).transpose(2, 3)) / math.sqrt(self.head_dim)
# TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache # TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
# to be able to avoid many of these transpose/reshape/view. # to be able to avoid many of these transpose/reshape/view.
query_states = query_states.transpose(1, 2) query_states = query_states.transpose(1, 2)
@ -301,7 +213,7 @@ class LlamaAttention_Adapted(LlamaAttention):
value_states = value_states.to(target_dtype) value_states = value_states.to(target_dtype)
""" """
if self.mode == "flash_attn": if mode == "flash_attn":
attn_output = flash_attn_func( attn_output = flash_attn_func(
query_states, query_states,
key_states, key_states,
@ -312,7 +224,7 @@ class LlamaAttention_Adapted(LlamaAttention):
) )
attn_output = attn_output.reshape(bsz, q_len, -1).contiguous() attn_output = attn_output.reshape(bsz, q_len, -1).contiguous()
elif self.mode == "xformers": elif mode == "xformers":
attn_output = memory_efficient_attention( attn_output = memory_efficient_attention(
query_states, query_states,
key_states, key_states,
@ -347,7 +259,7 @@ class LlamaAttention_Adapted(LlamaAttention):
# in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling. # in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
is_causal = True if causal_mask is None and q_len > 1 else False is_causal = True if causal_mask is None and q_len > 1 else False
if self.mode in ["fused_attn"]: if mode in ["fused_attn"]:
attn_output = fused_attn_func( attn_output = fused_attn_func(
query_states, query_states,
key_states, key_states,
@ -356,6 +268,20 @@ class LlamaAttention_Adapted(LlamaAttention):
softmax_scale=1.0 / math.sqrt(self.head_dim), softmax_scale=1.0 / math.sqrt(self.head_dim),
dropout_p=dropout_rate, dropout_p=dropout_rate,
) )
elif mode in ["default"]:
attn_scores = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
# cringe logic
attn_weights = (attn_scores + causal_mask) if attention_mask is not None else (attn_scores)
# upcast attention to fp32
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
attn_output = torch.matmul(attn_weights, value_states)
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
else: else:
with torch.nn.attention.sdpa_kernel(self.mode): with torch.nn.attention.sdpa_kernel(self.mode):
attn_output = torch.nn.functional.scaled_dot_product_attention( attn_output = torch.nn.functional.scaled_dot_product_attention(