This commit is contained in:
mrq 2024-06-05 20:30:43 -05:00
parent 880b4ecd1b
commit ff6fe6f1bc
14 changed files with 300 additions and 368 deletions

View File

@ -1,30 +0,0 @@
"""
# https://github.com/enhuiz/vall-e/
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
class AdaLN(nn.Module):
def __init__(self, d_model, n_levels, eps=1e-5, k=0.1, c=2):
super().__init__()
self.eps = eps
self.emb = nn.Embedding(n_levels, d_model * 2)
self.k = k
self.c = c
nn.init.zeros_(self.emb.weight)
def forward(self, x, l):
h = F.layer_norm(x, x.shape[-1:], eps=self.eps)
# The initial implementation (https://github.com/enhuiz/vall-e/blob/fbf023448c08e55c0422eefed7fc234cf8b76680/vall_e/vall_e/base.py#L135)
# performed worse than vanilla LayerNorm.
# The authors mentioned another AdaNorm paper (https://openreview.net/pdf?id=HyxndNrxLB) as they introduce AdaLN.
# Did they use AdaNorm inside AdaLN? (as follows)
h = self.c * (1 - (self.k * h).detach()) * h
logγ, β = self.emb(l).unsqueeze(1).chunk(2, dim=-1)
y = logγ.exp() * h + β
return y

View File

@ -509,4 +509,4 @@ def example_usage():
sample("final")
if __name__ == "__main__":
example_usage()
example_usage()

56
vall_e/models/arch/__init__.py Executable file
View File

@ -0,0 +1,56 @@
AVAILABLE_ARCHES = []
try:
from .transformer import SinusoidalEmbedding, Block as TransformerBlock
AVAILABLE_ARCHES.append("transformer")
except Exception as e:
print("Error importing `transformer` arch:", e)
pass
try:
from .retnet import RetNetDecoder, RetNetConfig
AVAILABLE_ARCHES.append("retnet")
except Exception as e:
print("Error importing `retnet` arch:", e)
pass
try:
from .retnet_syncdoth.retnet_ts import RetNetDecoder as RetNetDecoder_TS, RetNetConfig as RetNetConfig_TS
AVAILABLE_ARCHES.append("retnet-ts")
except Exception as e:
print("Error importing `retnet-ts` arch:", e)
pass
try:
from .retnet_syncdoth.retnet_hf import RetNetDecoder as RetNetDecoder_HF, RetNetConfig as RetNetConfig_HF, RetNetForCausalLM
AVAILABLE_ARCHES.append("retnet-hf")
except Exception as e:
print("Error importing `retnet-hf` arch:", e)
pass
try:
from .llama import LlamaModel, LlamaConfig, AVAILABLE_ATTENTIONS, LlamaAttention, LlamaAttention_Base, LlamaForCausalLM
AVAILABLE_ARCHES.append("llama")
except Exception as e:
print("Error importing `llama` arch:", e)
pass
try:
from .bitnet import BitNetTransformer
AVAILABLE_ARCHES.append("bitnet")
except Exception as e:
print("Error importing `bitnet` arch:", e)
pass
try:
from .mixtral import MixtralModel, MixtralConfig
AVAILABLE_ARCHES.append("mixtral")
except Exception as e:
print("Error importing `mixtral` arch:", e)
try:
from .mamba import MambaMixelModel, MambaLMHeadModel
AVAILABLE_ARCHES.append("mamba")
AVAILABLE_ARCHES.append("mamba2")
except Exception as e:
print("Error importing `mamba` arch:", e)

View File

@ -0,0 +1,51 @@
# https://github.com/kyegomez/BitNet
from torch import Tensor, nn
from bitnet.bit_transformer import Transformer as BitNetTransformerBlock, RMSNorm as BitNetRMSNorm
# re-enable logging because zetascale fucking sucks
import logging
logging.getLogger().setLevel(logging.DEBUG)
# override for wrapping checkpointing
def BitNetTransformerBlock_forward(self, x: Tensor, *args, **kwargs) -> Tensor:
skip = x
for attn, ffn in zip(self.layers, self.ffn_layers):
if x.requires_grad and self.gradient_checkpointing:
x, _ = checkpoint(attn, x, x, x, is_causal=True, *args, **kwargs, use_reentrant=False)
else:
x, _ = attn(x, x, x, is_causal=True, *args, **kwargs)
x = x + skip
x = ffn(x) + x
return x
BitNetTransformerBlock.forward = BitNetTransformerBlock_forward
# override because bitnet's BitNetTransformer includes an embedding input / classifier output layers inside of it, which isn't favorable
class BitNetTransformer(nn.Module):
def __init__(
self,
dim: int,
depth: int,
num_tokens: int,
heads=8,
ff_mult=4,
gradient_checkpointing = True
):
super().__init__()
self.transformer = BitNetTransformerBlock( dim=dim, depth=depth, heads=heads, ff_mult=ff_mult )
self.norm = BitNetRMSNorm(dim)
self.transformer.gradient_checkpointing = gradient_checkpointing
def forward(self, x):
x = self.transformer(x)
return self.norm( x )
"""
from bitnet import BitNetTransformer
def NoEmbedding_BitNetTransformer_Forward(self, x):
x = self.transformer(x)
return self.to_logits[0](x)
BitNetTransformer.forward = NoEmbedding_BitNetTransformer_Forward
"""

View File

@ -0,0 +1,92 @@
# https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/modeling_llama.py
import torch
from typing import Literal, overload, Optional, Tuple
from torch import Tensor, nn
from transformers.cache_utils import Cache
from transformers import LlamaModel, LlamaConfig, LlamaForCausalLM
from transformers.models.llama.modeling_llama import LlamaAttention as LlamaAttention_Base, apply_rotary_pos_emb
AVAILABLE_ATTENTIONS = ["mem_efficient", "math"]
try:
from xformers.ops import LowerTriangularMask
from xformers.ops.fmha import memory_efficient_attention
AVAILABLE_ATTENTIONS.append("xformers")
except Exception as e:
print("Error while importing `xformers`", e)
try:
from transformers.utils import is_flash_attn_2_available
if is_flash_attn_2_available():
AVAILABLE_ATTENTIONS.append("flash")
except Exception as e:
print("Error while querying for `flash_attn_2` support", e)
class LlamaAttention(LlamaAttention_Base):
def __init__(self, *args, **kwargs):
if 'mode' in kwargs:
self.mode = kwargs['mode']
kwargs.pop("mode")
else:
self.mode = "math"
super().__init__(*args, **kwargs)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
cache_position: Optional[torch.LongTensor] = None,
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
cos, sin = self.rotary_emb(value_states, position_ids)
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
past_key_value = getattr(self, "past_key_value", past_key_value)
if past_key_value is not None:
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
query_states = query_states.transpose(1, 2)
key_states = key_states.transpose(1, 2)
value_states = value_states.transpose(1, 2)
dropout_rate = self.attention_dropout if self.training else 0.0
if self.mode == "xformers":
if attention_mask is None or attention_mask[0, 0, 0, 1] == 0:
attn_output = memory_efficient_attention(query_states, key_states, value_states, attn_bias=None, p=dropout_rate)
else:
attn_output = memory_efficient_attention(query_states, key_states, value_states, attn_bias=LowerTriangularMask(), p=dropout_rate)
else:
#torch.nn.attention.sdpa_kernel
with torch.backends.cuda.sdp_kernel(enable_flash=self.mode == "flash", enable_math=self.mode == "math", enable_mem_efficient=self.mode == "mem_efficient"):
attn_output = torch.nn.functional.scaled_dot_product_attention(query_states, key_states, value_states, attn_mask=attention_mask, dropout_p=dropout_rate)
attn_weights = None
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
attn_output = self.o_proj(attn_output)
return attn_output, attn_weights, past_key_value

View File

@ -0,0 +1,30 @@
# https://github.com/state-spaces/mamba
from mamba_ssm.models.mixer_seq_simple import MambaLMHeadModel, MambaConfig, MixerModel as MambaMixelModel, layer_norm_fn as MambaLayerNormFn, RMSNorm as MambaRMSNorm
def MambaMixelModel_forward(self, input_ids=None, hidden_states=None, inference_params=None, **mixer_kwargs):
if hidden_states is None:
hidden_states = self.embedding(input_ids)
residual = None
for layer in self.layers:
if self.gradient_checkpointing and hidden_states.requires_grad:
hidden_states, residual = checkpoint( layer, hidden_states, residual, inference_params=inference_params, use_reentrant=False )
else:
hidden_states, residual = layer( hidden_states, residual, inference_params=inference_params )
if not self.fused_add_norm:
residual = (hidden_states + residual) if residual is not None else hidden_states
hidden_states = self.norm_f(residual.to(dtype=self.norm_f.weight.dtype))
else:
# Set prenorm=False here since we don't need the residual
hidden_states = MambaLayerNormFn(
hidden_states,
self.norm_f.weight,
self.norm_f.bias,
eps=self.norm_f.eps,
residual=residual,
prenorm=False,
residual_in_fp32=self.residual_in_fp32,
is_rms_norm=isinstance(self.norm_f, MambaRMSNorm)
)
return hidden_states
MambaMixelModel.forward = MambaMixelModel_forward

View File

@ -0,0 +1,45 @@
# https://github.com/huggingface/transformers/blob/main/src/transformers/models/mixtral/modeling_mixtral.py
import torch
from transformers import MixtralModel, MixtralConfig
from transformers.models.mixtral.modeling_mixtral import load_balancing_loss_func, MixtralSparseMoeBlock
# This is required because batch sizes > 1 throws errors
def Fixed_MixtralSparseMoeBlock_forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
""" """
batch_size, sequence_length, hidden_dim = hidden_states.shape
hidden_states = hidden_states.reshape(-1, hidden_dim) # was view()
# router_logits: (batch * sequence_length, n_experts)
router_logits = self.gate(hidden_states)
routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float)
routing_weights, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1)
routing_weights /= routing_weights.sum(dim=-1, keepdim=True)
# we cast back to the input dtype
routing_weights = routing_weights.to(hidden_states.dtype)
final_hidden_states = torch.zeros(
(batch_size * sequence_length, hidden_dim), dtype=hidden_states.dtype, device=hidden_states.device
)
expert_mask = torch.nn.functional.one_hot(selected_experts, num_classes=self.num_experts).permute(2, 1, 0)
for expert_idx in range(self.num_experts):
expert_layer = self.experts[expert_idx]
idx, top_x = torch.where(expert_mask[expert_idx])
if top_x.shape[0] == 0:
continue
top_x_list = top_x.tolist()
idx_list = idx.tolist()
current_state = hidden_states[None, top_x_list].reshape(-1, hidden_dim)
current_hidden_states = expert_layer(current_state) * routing_weights[top_x_list, idx_list, None]
final_hidden_states.index_add_(0, top_x, current_hidden_states.to(hidden_states.dtype))
final_hidden_states = final_hidden_states.reshape(batch_size, sequence_length, hidden_dim)
return final_hidden_states, router_logits
Original_MixtralSparseMoeBlock_forward = MixtralSparseMoeBlock.forward
MixtralSparseMoeBlock.forward = Fixed_MixtralSparseMoeBlock_forward

View File

View File

@ -1,9 +1,9 @@
# https://github.com/syncdoth/RetNet/
from ..ext.retnet_hf.configuration_retnet import RetNetConfig
from ..ext.retnet_hf.modeling_retnet import RetNetModel as RetNetDecoder, RetNetForCausalLM
from ....ext.retnet_hf.configuration_retnet import RetNetConfig
from ....ext.retnet_hf.modeling_retnet import RetNetModel as RetNetDecoder, RetNetForCausalLM
# things we're overriding or required to override
from ..ext.retnet_hf.modeling_retnet import RetNetDecoderLayer, MultiScaleRetention, theta_shift, split_heads, RMSNorm, FeedForwardNetwork, get_activation_fn, LayerNorm, RetNetRelPos
from ....ext.retnet_hf.modeling_retnet import RetNetDecoderLayer, MultiScaleRetention, theta_shift, split_heads, RMSNorm, FeedForwardNetwork, get_activation_fn, LayerNorm, RetNetRelPos
import torch
import math

View File

@ -1,9 +1,9 @@
# https://github.com/syncdoth/RetNet/
from ..ext.retnet_ts.config import RetNetConfig
from ..ext.retnet_ts.retnet import RetNetModel as RetNetDecoder
from ....ext.retnet_ts.config import RetNetConfig
from ....ext.retnet_ts.retnet import RetNetModel as RetNetDecoder
# things we're overriding or required to override
from ..ext.retnet_ts.retnet import RetNetDecoderLayer, MultiScaleRetention, theta_shift, RMSNorm, FeedForwardNetwork, get_activation_fn, LayerNorm, RetNetRelPos
from ....ext.retnet_ts.retnet import RetNetDecoderLayer, MultiScaleRetention, theta_shift, RMSNorm, FeedForwardNetwork, get_activation_fn, LayerNorm, RetNetRelPos
import torch
import math

View File

@ -14,7 +14,7 @@ from einops import rearrange
from torch import Tensor, einsum, nn
from torch.utils.checkpoint import checkpoint
from ..utils import wrapper as ml
from ...utils import wrapper as ml
class AdaLN(nn.Module):
def __init__(self, d_model, n_levels, eps=1e-5, k=0.1, c=2):

View File

@ -16,268 +16,10 @@ from torch.nn.utils.rnn import pad_sequence
from torch.utils.checkpoint import checkpoint
from torchmetrics.classification import BinaryAccuracy, MulticlassAccuracy, MulticlassPrecision
from .arch import *
from ..utils import wrapper as ml
from ..samplers import reptition_penalize, length_penalize, top_k_top_p_filtering, dynamic_temperature, top_k_logits_list, mirostat_sample
try:
from .transformer import SinusoidalEmbedding, Block as TransformerBlock
except Exception as e:
print("Error importing `transformer` arch:", e)
pass
try:
#from .retnet import RetNetDecoder, RetNetConfig
from .retnet_ts import RetNetDecoder, RetNetConfig
except Exception as e:
print("Error importing `retnet` arch:", e)
pass
from .retnet_hf import RetNetDecoder as RetNetDecoder_HF, RetNetConfig as RetNetConfig_HF
"""
try:
except Exception as e:
print("Error importing `retnet-hf` arch:", e)
pass
"""
try:
from transformers import LlamaModel, LlamaConfig
except Exception as e:
print("Error importing `llama` arch:", e)
pass
try:
from transformers import MistralModel, MistralConfig
except Exception as e:
print("Error importing `mistral` arch:", e)
pass
try:
from bitnet.bit_transformer import Transformer as BitNetTransformerBlock, RMSNorm as BitNetRMSNorm
# re-enable logging because zetascale fucking sucks
import logging
logging.getLogger().setLevel(logging.DEBUG)
# override for wrapping checkpointing
def BitNetTransformerBlock_forward(self, x: Tensor, *args, **kwargs) -> Tensor:
skip = x
for attn, ffn in zip(self.layers, self.ffn_layers):
if x.requires_grad and self.gradient_checkpointing:
x, _ = checkpoint(attn, x, x, x, is_causal=True, *args, **kwargs, use_reentrant=False)
else:
x, _ = attn(x, x, x, is_causal=True, *args, **kwargs)
x = x + skip
x = ffn(x) + x
return x
BitNetTransformerBlock.forward = BitNetTransformerBlock_forward
# override because bitnet's BitNetTransformer includes an embedding input / classifier output layers inside of it, which isn't favorable
class BitNetTransformer(nn.Module):
def __init__(
self,
dim: int,
depth: int,
num_tokens: int,
heads=8,
ff_mult=4,
gradient_checkpointing = True
):
super().__init__()
self.transformer = BitNetTransformerBlock( dim=dim, depth=depth, heads=heads, ff_mult=ff_mult )
self.norm = BitNetRMSNorm(dim)
self.transformer.gradient_checkpointing = gradient_checkpointing
def forward(self, x):
x = self.transformer(x)
return self.norm( x )
"""
from bitnet import BitNetTransformer
def NoEmbedding_BitNetTransformer_Forward(self, x):
x = self.transformer(x)
return self.to_logits[0](x)
BitNetTransformer.forward = NoEmbedding_BitNetTransformer_Forward
"""
except Exception as e:
print("Error importing `bitnet` arch:", e)
pass
try:
from transformers import MixtralModel, MixtralConfig
from transformers.models.mixtral.modeling_mixtral import load_balancing_loss_func, MixtralSparseMoeBlock
# This is required because batch sizes > 1 throws errors
def Fixed_MixtralSparseMoeBlock_forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
""" """
batch_size, sequence_length, hidden_dim = hidden_states.shape
hidden_states = hidden_states.reshape(-1, hidden_dim) # was view()
# router_logits: (batch * sequence_length, n_experts)
router_logits = self.gate(hidden_states)
routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float)
routing_weights, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1)
routing_weights /= routing_weights.sum(dim=-1, keepdim=True)
# we cast back to the input dtype
routing_weights = routing_weights.to(hidden_states.dtype)
final_hidden_states = torch.zeros(
(batch_size * sequence_length, hidden_dim), dtype=hidden_states.dtype, device=hidden_states.device
)
expert_mask = torch.nn.functional.one_hot(selected_experts, num_classes=self.num_experts).permute(2, 1, 0)
for expert_idx in range(self.num_experts):
expert_layer = self.experts[expert_idx]
idx, top_x = torch.where(expert_mask[expert_idx])
if top_x.shape[0] == 0:
continue
top_x_list = top_x.tolist()
idx_list = idx.tolist()
current_state = hidden_states[None, top_x_list].reshape(-1, hidden_dim)
current_hidden_states = expert_layer(current_state) * routing_weights[top_x_list, idx_list, None]
final_hidden_states.index_add_(0, top_x, current_hidden_states.to(hidden_states.dtype))
final_hidden_states = final_hidden_states.reshape(batch_size, sequence_length, hidden_dim)
return final_hidden_states, router_logits
Original_MixtralSparseMoeBlock_forward = MixtralSparseMoeBlock.forward
MixtralSparseMoeBlock.forward = Fixed_MixtralSparseMoeBlock_forward
except Exception as e:
print("Error importing `mixtral` arch:", e)
try:
from mamba_ssm.models.mixer_seq_simple import MambaLMHeadModel, MambaConfig, MixerModel as MambaMixelModel, layer_norm_fn as MambaLayerNormFn, RMSNorm as MambaRMSNorm
def MambaMixelModel_forward(self, input_ids=None, hidden_states=None, inference_params=None, **mixer_kwargs):
if hidden_states is None:
hidden_states = self.embedding(input_ids)
residual = None
for layer in self.layers:
if self.gradient_checkpointing and hidden_states.requires_grad:
hidden_states, residual = checkpoint( layer, hidden_states, residual, inference_params=inference_params, use_reentrant=False )
else:
hidden_states, residual = layer( hidden_states, residual, inference_params=inference_params )
if not self.fused_add_norm:
residual = (hidden_states + residual) if residual is not None else hidden_states
hidden_states = self.norm_f(residual.to(dtype=self.norm_f.weight.dtype))
else:
# Set prenorm=False here since we don't need the residual
hidden_states = MambaLayerNormFn(
hidden_states,
self.norm_f.weight,
self.norm_f.bias,
eps=self.norm_f.eps,
residual=residual,
prenorm=False,
residual_in_fp32=self.residual_in_fp32,
is_rms_norm=isinstance(self.norm_f, MambaRMSNorm)
)
return hidden_states
MambaMixelModel.forward = MambaMixelModel_forward
except Exception as e:
print("Error importing `mixtral` arch:", e)
AVAILABLE_ATTENTIONS = ["mem_efficient", "math"]
try:
from xformers.ops import LowerTriangularMask
from xformers.ops.fmha import memory_efficient_attention
AVAILABLE_ATTENTIONS.append("xformers")
except Exception as e:
print("Error while importing `xformers`", e)
try:
from transformers.utils import is_flash_attn_2_available
if is_flash_attn_2_available():
AVAILABLE_ATTENTIONS.append("flash")
except Exception as e:
raise e
try:
from transformers.cache_utils import Cache
from transformers.models.llama.modeling_llama import LlamaAttention, apply_rotary_pos_emb
class Llama_Attention(LlamaAttention):
def __init__(self, *args, **kwargs):
if 'mode' in kwargs:
self.mode = kwargs['mode']
kwargs.pop("mode")
else:
self.mode = "math"
super().__init__(*args, **kwargs)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
cache_position: Optional[torch.LongTensor] = None,
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
cos, sin = self.rotary_emb(value_states, position_ids)
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
past_key_value = getattr(self, "past_key_value", past_key_value)
if past_key_value is not None:
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
query_states = query_states.transpose(1, 2)
key_states = key_states.transpose(1, 2)
value_states = value_states.transpose(1, 2)
dropout_rate = self.attention_dropout if self.training else 0.0
if self.mode == "xformers":
if attention_mask is None or attention_mask[0, 0, 0, 1] == 0:
attn_output = memory_efficient_attention(query_states, key_states, value_states, attn_bias=None, p=dropout_rate)
else:
attn_output = memory_efficient_attention(query_states, key_states, value_states, attn_bias=LowerTriangularMask(), p=dropout_rate)
else:
#torch.nn.attention.sdpa_kernel
with torch.backends.cuda.sdp_kernel(enable_flash=self.mode == "flash", enable_math=self.mode == "math", enable_mem_efficient=self.mode == "mem_efficient"):
attn_output = torch.nn.functional.scaled_dot_product_attention(query_states, key_states, value_states, attn_mask=attention_mask, dropout_p=dropout_rate)
attn_weights = None
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
attn_output = self.o_proj(attn_output)
return attn_output, attn_weights, past_key_value
except Exception as e:
print("Error creating modified `LLamaAttention`:", e)
def _create_mask(l, device):
"""1 is valid region and 0 is invalid."""
seq = torch.arange(max(l), device=device).unsqueeze(0) # (1 t)
@ -751,7 +493,7 @@ class Base(nn.Module):
raise RuntimeError(f'Unknown arch specified: {self.arch_type}')
if self.hyper_config.attention in ["xformers", "auto", "mem_efficient", "math", "flash"]:
self.model = ml.replace_attention( self.model, klass=Llama_Attention, target=LlamaAttention, mode=self.hyper_config.attention )
self.model = ml.replace_attention( self.model, klass=LlamaAttention, target=LlamaAttention_Base, mode=self.hyper_config.attention )
self.classifier = nn.Linear(d_model, n_resp_tokens)

View File

@ -24,73 +24,19 @@ import math
from einops import rearrange
from tqdm import trange
AVAILABLE_ARCHES = []
from .arch import *
try:
from transformers import LlamaForCausalLM, LlamaConfig
AVAILABLE_ARCHES.append("llama")
except Exception as e:
print("Error importing `llama` arch:", e)
pass
if cfg.model.arch_type not in AVAILABLE_ARCHES:
raise ValueError(f"Requesting arch `{cfg.model.arch_type}` but not available")
try:
from .retnet_hf import RetNetConfig
from ..ext.retnet_hf.modeling_retnet import RetNetForCausalLM
AVAILABLE_ARCHES.append("retnet")
except Exception as e:
print("Error importing `retnet` arch:", e)
pass
try:
from mamba_ssm.models.mixer_seq_simple import MambaLMHeadModel, MambaConfig, MixerModel as MambaMixelModel, layer_norm_fn as MambaLayerNormFn, RMSNorm as MambaRMSNorm
def MambaMixelModel_forward(self, input_ids, inference_params=None, **mixer_kwargs):
hidden_states = self.embedding(input_ids)
residual = None
for layer in self.layers:
if self.gradient_checkpointing and hidden_states.requires_grad:
hidden_states, residual = checkpoint( layer, hidden_states, residual, inference_params=inference_params, use_reentrant=False )
else:
hidden_states, residual = layer( hidden_states, residual, inference_params=inference_params )
if not self.fused_add_norm:
residual = (hidden_states + residual) if residual is not None else hidden_states
hidden_states = self.norm_f(residual.to(dtype=self.norm_f.weight.dtype))
else:
# Set prenorm=False here since we don't need the residual
hidden_states = MambaLayerNormFn(
hidden_states,
self.norm_f.weight,
self.norm_f.bias,
eps=self.norm_f.eps,
residual=residual,
prenorm=False,
residual_in_fp32=self.residual_in_fp32,
is_rms_norm=isinstance(self.norm_f, MambaRMSNorm)
)
return hidden_states
MambaMixelModel.forward = MambaMixelModel_forward
AVAILABLE_ARCHES.append("mamba")
AVAILABLE_ARCHES.append("mamba2")
except Exception as e:
print("Error importing `mamba` arch:", e)
pass
SELECTED_ARCH = cfg.model.arch_type
if SELECTED_ARCH not in AVAILABLE_ARCHES:
raise ValueError(f"Requesting arch `{SELECTED_ARCH}` but not available")
if SELECTED_ARCH in ["mamba","mamba2"]:
if cfg.model.arch_type in ["mamba","mamba2"]:
LlmArchClass = MambaLMHeadModel
elif SELECTED_ARCH == "llama":
elif cfg.model.arch_type == "llama":
LlmArchClass = LlamaForCausalLM
elif SELECTED_ARCH == "retnet":
elif cfg.model.arch_type == "retnet":
LlmArchClass = RetNetForCausalLM
else:
raise ValueError(f"Requesting arch `{SELECTED_ARCH}` but not available")
raise ValueError(f"Requesting arch `{cfg.model.arch_type}` but not available")
class Model(LlmArchClass):
def __init__(
@ -113,7 +59,7 @@ class Model(LlmArchClass):
# text_tokens + rvq levels + [audio tokens * codebooks] (prom) + [audio tokens * codebooks] (resp) + stop
vocab_size = n_text_tokens + cfg.model.max_levels + (n_audio_tokens * cfg.model.max_levels) + (n_audio_tokens * cfg.model.max_levels) + 1
if SELECTED_ARCH == "llama":
if cfg.model.arch_type == "llama":
super().__init__(config=LlamaConfig(
vocab_size=vocab_size,
hidden_size=d_model,
@ -134,7 +80,7 @@ class Model(LlmArchClass):
self.gradient_checkpointing_enable(gradient_checkpointing_kwargs=dict(
use_reentrant=False
))
elif SELECTED_ARCH == "retnet":
elif cfg.model.arch_type == "retnet":
super().__init__(config=RetNetConfig(
vocab_size=vocab_size,
decoder_embed_dim=d_model,
@ -156,12 +102,12 @@ class Model(LlmArchClass):
decoder_normalize_before=True,
))
elif SELECTED_ARCH in ["mamba","mamba2"]:
elif cfg.model.arch_type in ["mamba","mamba2"]:
super().__init__(config=MambaConfig(
vocab_size=vocab_size,
d_model=d_model,
n_layer=n_layers*2,
ssm_cfg={"layer": "Mamba2", "chunk_size":64} if SELECTED_ARCH == "mamba2" else {},
ssm_cfg={"layer": "Mamba2", "chunk_size":64} if cfg.model.arch_type == "mamba2" else {},
fused_add_norm=True,
residual_in_fp32=True,
))
@ -181,7 +127,7 @@ class Model(LlmArchClass):
*args,
**kwargs
):
if SELECTED_ARCH in ["mamba","mamba2"]:
if cfg.model.arch_type in ["mamba","mamba2"]:
kwargs["cg"] = True
if "attention_mask" in kwargs:
@ -200,7 +146,7 @@ class Model(LlmArchClass):
*args,
**kwargs,
):
if SELECTED_ARCH in ["mamba","mamba2"]:
if cfg.model.arch_type in ["mamba","mamba2"]:
if "attention_mask" in kwargs:
kwargs.pop("attention_mask")
@ -371,7 +317,7 @@ def example_usage():
torch.save( {
'module': model.state_dict()
}, f"./data/{SELECTED_ARCH}.pth" )
}, f"./data/{cfg.model.arch_type}.pth" )
print(f"{LlmArchClass} parameter count: {sum(p.numel() for p in model.parameters() if p.requires_grad)}")
@ -427,7 +373,7 @@ def example_usage():
resp_list[i] = torch.stack( resp ).t()
for i, batch in enumerate(resp_list):
_ = decode_to_file(batch.to(device=device), f"data/{SELECTED_ARCH}.{cfg.audio_backend}.{i}.{name}.wav", device=device)
_ = decode_to_file(batch.to(device=device), f"data/{cfg.model.arch_type}.{cfg.audio_backend}.{i}.{name}.wav", device=device)
unload_model()
@ -456,7 +402,7 @@ def example_usage():
torch.save( {
'module': model.state_dict()
}, f"./data/{SELECTED_ARCH}.pth" )
}, f"./data/{cfg.model.arch_type}.pth" )
#sample("init", 5)
train()