|
545162195b
|
deprecate sole AR/NAR model by only keeping the AR+NAR (the beauty of no one using this is that I can break compat as much as I want), add tone token for when I classify my dataset with tone/emotion in the future, some other things
|
2024-04-15 19:54:32 -05:00 |
|
|
35d78a2bb0
|
Yet Another Underlying Transformer Implementation (BitNet, will give it a few days to see how it fares)
|
2024-02-29 20:29:17 -06:00 |
|
|
0db3203b21
|
added LLaMA/Mixtral (if experts>1) model arches, utilize XMoE's loss as well, set MoE frequency to 1 to make every layer MoE'd for RetNet, etc. (going to do tests without burning out again to see how things go)
|
2023-12-22 19:27:36 -06:00 |
|
|
6c51a629cc
|
resetting step count resets the samples processed and other metrics
|
2023-10-29 12:11:19 -05:00 |
|
|
fb467b19ba
|
exposed rolling resp context to the web UI, added passing in language to inferencing command line
|
2023-10-12 23:21:01 -05:00 |
|
|
99e980d323
|
documentation and more better-er attribution
|
2023-10-10 17:15:16 -05:00 |
|
|
1fd91b6437
|
cleanup
|
2023-10-06 10:13:54 -05:00 |
|
|
d12877ee09
|
added option to set probability of selecting the AR during training under a monolithic AR+NAR, added some more to-dos while I have them in mind
|
2023-10-02 16:52:42 -05:00 |
|
|
4abd6564d1
|
fixed training stats not loading from exported weights, a bit of a readme cleanup, updated example training yaml
|
2023-09-23 19:59:00 -05:00 |
|
|
a6bfe43590
|
added mirostat sampling (given a partially trained model, it got far decent output than I expected, need to test on a better trained model)
|
2023-09-18 18:55:41 -05:00 |
|
|
23a5fdd645
|
implemented a naive beam search (I really should be taking a break)
|
2023-09-12 21:28:07 -05:00 |
|
|
5ac119a6e7
|
added light web UI (need to port the telemetry disabling bandaids from aivc)
|
2023-09-09 16:17:20 -05:00 |
|
|
10c34c5b98
|
added a length-based decay factor for repetition penalty
|
2023-09-08 21:02:00 -05:00 |
|
|
b922f35b6b
|
added documentation on how these new sampling parameters are very iffy and you really need to know what you are doing to use them because this is audio generation and not text generation
|
2023-09-08 20:43:36 -05:00 |
|
|
4613781e23
|
integrated plot script, added tts-c task token to help the model be able to mix between normal VALL-E and VALL-E continuous
|
2023-09-02 16:29:53 -05:00 |
|
|
f7e942ec99
|
modified plotting script to be more agnostic to X
|
2023-09-02 13:59:43 -05:00 |
|
|
6455a2f9d7
|
I think I fixed a bug?
|
2023-08-24 23:33:36 -05:00 |
|
|
f3fbed5ffd
|
updated notices tailored for windows / low VRAM cards
|
2023-08-24 17:19:10 -05:00 |
|
|
00ad4af651
|
updated draconian requirement for espeak-ng to be installed and the env var set to the dll for Windows
|
2023-08-24 14:57:01 -05:00 |
|
|
9c5a33bfd2
|
added repo with my weights so far
|
2023-08-22 13:09:44 -05:00 |
|
|
f7f6d3bf6d
|
validated that SpeechX tasks cse and nse works, added a method to test each task by invoking python3 -m vall_e.data --action=tasks --tasks='sr,se,cse,nse'
|
2023-08-19 09:50:07 -05:00 |
|
|
0b46c1e312
|
god I am inexperienced with retaining compat from previous weights, I hope no one actually has weights
|
2023-08-18 21:29:20 -05:00 |
|
|
fb4e816823
|
oops
|
2023-08-18 21:11:19 -05:00 |
|
|
ee58db746f
|
actually make the evaluation dataset shuffled for sample_type=speaker
|
2023-08-17 15:04:45 -05:00 |
|
|
d7152fc7b9
|
added pruning of old checkpoints if specified (cfg.trainer.keep_last_checkpoints)
|
2023-08-16 20:12:12 -05:00 |
|
|
1e3e1d9315
|
tweaks
|
2023-08-15 21:58:16 -05:00 |
|
|
13571380be
|
made exporter make more sense
|
2023-08-13 22:56:28 -05:00 |
|
|
d7deaf6def
|
distributed training works now (hopefully)
|
2023-08-13 22:07:45 -05:00 |
|
|
608c1970eb
|
ops
|
2023-08-03 20:36:19 -05:00 |
|
|
d88e43800b
|
adjustments
|
2023-08-02 22:01:49 +00:00 |
|
|
bf8cedc9dd
|
Rewrite init
|
2023-08-02 21:53:35 +00:00 |
|