import math import torch import torch.nn.functional as F import numpy as np from torch import Tensor, einsum, nn # Simple filter to modify a token's probability if it shows up in the past # `one_time` will only apply the penalty once # `decay` is a factor that will exponentially apply to how far away it is def reptition_penalize( logits, previous, factor=1.0, decay=0.0, one_time=True ): if factor == 1.0 or previous is None: return logits unique = set() priors = reversed(previous.tolist()) for distance, token in enumerate(priors): # skip if we're only applying the decay once if one_time and token in unique: continue distance += 1 logits[:, token] /= factor * (distance ** decay) # add to set if we care about it if one_time: unique.add(token) return logits # Simple "filter" that modifies the logit for the stop token, based on the sequence length # `length` is the length of the sequence currently # `factor` is the power the length is raised to, so values > 0 will yield longer sequences, values < 0 will yield shorter sequences # `token` is the stop token. def length_penalize( logits, length, factor=0.0, token=-1 ): if factor == 0.0: return logits logits[:, token] /= (length ** factor) return logits # Simple way to ban tokens def ban_tokens( logits, tokens ): for token in tokens: # token not in logits if logits.shape[-1] >= token: continue logits[:, token] = -float("inf") return logits # Credit to https://github.com/microsoft/unilm/blob/master/xtune/src/transformers/modeling_utils.py#L1145 / https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317 def top_k_top_p_filtering( logits, top_k=0, top_p=1.0, filter_value=-float("Inf"), min_tokens=1 ): """Filter a distribution of logits using top-k and/or nucleus (top-p) filtering Args: logits: logits distribution shape (batch size, vocabulary size) if top_k > 0: keep only top k tokens with highest probability (top-k filtering). if top_p < 1.0: keep the top tokens with cumulative probability >= top_p (nucleus filtering). Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751) Make sure we keep at least min_tokens per batch example in the output """ if top_k > 0: top_k = min(max(top_k, min_tokens), logits.size(-1)) # Safety check # Remove all tokens with a probability less than the last token of the top-k indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None] logits[indices_to_remove] = filter_value if top_p < 1.0: sorted_logits, sorted_indices = torch.sort(logits, descending=True) cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1) # Remove tokens with cumulative probability above the threshold (token with 0 are kept) sorted_indices_to_remove = cumulative_probs > top_p if min_tokens > 1: # Keep at least min_tokens (set to min_tokens-1 because we add the first one below) sorted_indices_to_remove[..., :min_tokens] = 0 # Shift the indices to the right to keep also the first token above the threshold sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone() sorted_indices_to_remove[..., 0] = 0 # scatter sorted tensors to original indexing indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove) logits[indices_to_remove] = filter_value return logits # credit to https://github.com/LostRuins/koboldcpp/pull/464 // https://github.com/kalomaze/koboldcpp/tree/dynamic-temp def dynamic_temperature( logits, temperature=1.0, min_temperature = 0.0, k = 10, sigmoidCenterPoint = 0.5 ): # loop over logits[:], as the NAR will have logits.shape[0] > 1 for i in range(logits.shape[0]): sum_exp = 0.0 maximum = torch.max( logits[i] ) for logit in logits[i]: sum_exp += math.exp( logit - maximum ) prob_max_token_before_temp = 1.0 / sum_exp dynamic_temperature = temperature - (temperature - min_temperature) / (1 + math.exp(-k * (prob_max_token_before_temp - sigmoidCenterPoint))) logits[i] /= dynamic_temperature return logits # picks the top K tokens amongst a batch of logits # logits: [Tensor] list of logits # candidates: [(batch, token)] list, where batch indicates the index of the logits the given token is from def top_k_logits_list( logits_list, k ): # ( batch, tokens ) => ( batch x tokens ) logits = torch.cat( logits_list ) candidates = list(torch.topk(logits.flatten(), k).indices.tolist()) # perform top-k across all logits for i, index in enumerate(candidates): t = [] N = np.prod(logits.size()) for n in logits.size(): N //= n t.append(index // N) index %= N candidates[i] = tuple(t) return candidates # Credit to: https://github.com/basusourya/mirostat/ # performs mirostat-based sampling # logits: Tensor of logit probabilities # state: the mirostat state def mirostat_sample( logits, state = None ): def compute_k(prob, n, tau): num = 0 den = 0 for i in range(100): b = prob[i]/prob[i+1] t = (i+2)/(i+1) num += math.log(b)*math.log(t) den += math.log(t)**2 s = num/den eps = s-1 k = ((eps*(2**(tau)))/(1-n**(-eps)))**(1/s) k = round(k) return k if "max_surprise" not in state: state["max_surprise"] = state["tau"] * 2 if "error_surprise" not in state: state["error_surprise"] = 0 if "running_total_surprise" not in state: state["running_total_surprise"] = 0 sorted_logits, sorted_indices = torch.sort( logits[-1, :], descending=True ) prob_original = torch.softmax( sorted_logits, dim=-1 ).tolist() k = compute_k(prob_original, state["n"], state["max_surprise"]) + 1 sorted_logits = sorted_logits[0:k] sorted_indices = sorted_indices[0:k] prob_topk = torch.softmax(sorted_logits, dim = 0) prev_i = torch.multinomial(prob_topk, num_samples=1, replacement=True) state["index_surprise"] = math.log2(1/prob_original[prev_i]) state["running_total_surprise"] += state["index_surprise"] state["error_surprise"] = state["index_surprise"] - state["tau"] state["max_surprise"] -= state["eta"] * state["error_surprise"] state["token"] = sorted_indices[prev_i] return state