from transformers.models.mamba.configuration_mamba import MambaConfig from transformers.models.mamba.modeling_mamba import MambaModel """ from transformers.models.mamba2.modeling_mamba2 import Mamba2Model from transformers.models.mamba2.configuration_mamba2 import Mamba2Config """ """ from mamba2_torch.modeling.configuration_mamba2 import Mamba2Config from mamba2_torch.modeling.modeling_mamba2 import Mamba2Model """ from fla.models.mamba2.configuration_mamba2 import Mamba2Config from fla.models.mamba2.modeling_mamba2 import Mamba2Model """ # https://github.com/state-spaces/mamba from torch.utils.checkpoint import checkpoint from mamba_ssm.models.mixer_seq_simple import MambaLMHeadModel, MambaConfig, MixerModel as MambaMixelModel, layer_norm_fn as MambaLayerNormFn, RMSNorm as MambaRMSNorm def MambaMixelModel_forward(self, input_ids=None, hidden_states=None, inference_params=None, **mixer_kwargs): if hidden_states is None: hidden_states = self.embedding(input_ids) residual = None for layer in self.layers: if self.gradient_checkpointing and hidden_states.requires_grad: hidden_states, residual = checkpoint( layer, hidden_states, residual, inference_params=inference_params, **mixer_kwargs, use_reentrant=False ) else: hidden_states, residual = layer( hidden_states, residual, inference_params=inference_params, **mixer_kwargs ) if not self.fused_add_norm: residual = (hidden_states + residual) if residual is not None else hidden_states hidden_states = self.norm_f(residual.to(dtype=self.norm_f.weight.dtype)) else: # Set prenorm=False here since we don't need the residual hidden_states = MambaLayerNormFn( hidden_states, self.norm_f.weight, self.norm_f.bias, eps=self.norm_f.eps, residual=residual, prenorm=False, residual_in_fp32=self.residual_in_fp32, is_rms_norm=isinstance(self.norm_f, MambaRMSNorm) ) return hidden_states MambaMixelModel.forward = MambaMixelModel_forward """