import copy import diskcache import h5py import json import os import subprocess import sys import time import torch from dataclasses import asdict, dataclass from dataclasses import dataclass, field from functools import cached_property from pathlib import Path from omegaconf import OmegaConf from .utils.distributed import world_size @dataclass() class _Config: cfg_path: str | None = None @property def relpath(self): return Path(self.cfg_path) @property def cache_dir(self): return self.relpath / ".cache" @property def ckpt_dir(self): return self.relpath / "ckpt" @property def log_dir(self): return self.relpath / "logs" / str(self.start_time) @cached_property def start_time(self): return int(time.time()) @cached_property def git_commit(self): try: cmd = "git rev-parse HEAD" return subprocess.check_output(cmd.split()).decode("utf8").strip() except: return "" @cached_property def git_status(self): try: cmd = "git status" return subprocess.check_output(cmd.split()).decode("utf8").strip() except: return "" def dumps(self): data = {k: getattr(self, k) for k in dir(self) if not k.startswith("__")} data = {k: v for k, v in data.items() if not callable(v)} return json.dumps(data, indent=2, default=str) def dump(self, path=None): if path is None: path = self.log_dir / "cfg.json" path.parent.mkdir(parents=True, exist_ok=True) with open(path, "w") as f: f.write(self.dumps()) @staticmethod def _is_cfg_argv(s): return "=" in s and "--" not in s @classmethod def from_yaml( cls, yaml_path ): return cls.from_cli( [f'yaml="{yaml_path}"'] ) @classmethod def from_cli(cls, args=sys.argv): cli_cfg = OmegaConf.from_cli([s for s in args if cls._is_cfg_argv(s)]) # Replace argv to ensure there are no omegaconf options, for compatibility with argparse. sys.argv = [s for s in sys.argv if not cls._is_cfg_argv(s)] if cli_cfg.get("help"): print(f"Configurable hyperparameters with their default values:") print(json.dumps(asdict(cls()), indent=2, default=str)) exit() if "yaml" in cli_cfg: yaml_cfg = OmegaConf.load(cli_cfg.yaml) yaml_path = Path(cli_cfg.yaml).absolute() cfg_path = Path(*yaml_path.relative_to(Path.cwd()).parts[:-1]) cfg_path = cfg_path.with_suffix("") cfg_path = f'./{cfg_path}' yaml_cfg.setdefault("cfg_path", cfg_path) cli_cfg.pop("yaml") else: yaml_cfg = {} merged = OmegaConf.merge(yaml_cfg, cli_cfg) return cls(**dict(merged)) def __repr__(self): return str(self) def __str__(self): return self.dumps() @dataclass() class Dataset: training: list[Path] = field(default_factory=lambda: []) validation: list[Path] = field(default_factory=lambda: []) noise: list[Path] = field(default_factory=lambda: []) temp: list[Path] = field(default_factory=lambda: []) speaker_name_getter: str = "lambda p: f'{p.parts[-3]}_{p.parts[-2]}'" speaker_group_getter: str = "lambda p: f'{p.parts[-3]}'" speaker_languages: dict = field(default_factory=lambda: {}) # dict where keys are the language codes and values are the speaker groups hdf5_name: str = "data.h5" use_hdf5: bool = False use_metadata: bool = False hdf5_flag: str = "a" validate: bool = True workers: int = 8 cache: bool = True phones_range: list[int] = field(default_factory=lambda: [4, 256]) duration_range: list[float] = field(default_factory=lambda: [1.0, 12.0]) min_utterances: int = 2 random_utterance: float = 1.0 max_prompts: int = 3 prompt_duration: float = 3.0 max_resps: int = 1 p_resp_append: float = 1.0 sample_type: str = "path" # path | speaker tasks_list: list[str] = field(default_factory=lambda: ["tts"]) @property def min_phones(self): return self.phones_range[0] @property def max_phones(self): return self.phones_range[1] @property def min_duration(self): return self.duration_range[0] @property def max_duration(self): return self.duration_range[1] @dataclass() class Model: name: str = "" # vanity name for the model version: int = 1 # 1 = old with MultiEmbedding, 2 = new with AudioEmbedding size: str | dict = "full" # preset string or explicitly defined dimensionality resp_levels: int = 1 # RVQ-bin levels this model targets for outputs prom_levels: int = 8 # RVQ-bin levels this model accepts as an input prompt tasks: int = 8 # ["tts", "ns", "sr", "tse", "cse", "nse"] and leaves two more for anything else I want (like "svc") langs: int = 1 # defined languages experts: int = 1 arch_type: str = "retnet" # or "transformer"" training: bool = True # unneeded now interleave: bool = False # use an interleaved AR rather than a split AR + NAR (experimental, worse performance and results) p_ar_level: float | str = "auto" # determines odds of selecting the AR (level 0) when training, "auto" for default behavior frozen_params: list[str] = field(default_factory=lambda: []) # frozen parameters that are not updated when training @property def full_name(self): name = [ self.name ] if self.size != "full" and isinstance(self.size, str): name.append(self.size) if self.arch_type != "transformer": if self.experts: name.append(f'{self.experts}x'+self.arch_type.replace("/", "-")) else: name.append(self.arch_type.replace("/", "-")) if self.interleave: name.append("interleaved") else: name.append(f'{cfg.models.prom_levels}') return "-".join(name) @property def tokens(self): if isinstance(self.size, dict) and hasattr(self.size, "tokens"): return self.size['tokens'] return 1024 @property def dim(self): if isinstance(self.size, dict) and hasattr(self.size, "dim"): return self.size['dim'] if isinstance(self.size, float): return math.floor(1024 * self.size) if self.size == "quarter": return 256 if self.size == "half": return 512 return 1024 @property def heads(self): if isinstance(self.size, dict) and hasattr(self.size, "heads"): return self.size['heads'] if isinstance(self.size, float): return math.floor(16 * self.size) if self.size == "quarter": return 4 if self.size == "half": return 8 return 16 @property def layers(self): if isinstance(self.size, dict) and hasattr(self.size, "layers"): return self.size['layers'] if self.size == "double": return 24 return 12 @property def activation_checkpointing(self): return cfg.trainer.activation_checkpointing @dataclass() class Models: _max_levels: int = 0 _prom_levels: int = 1 _models: list[Model] = field(default_factory=lambda: [ Model(name="ar", resp_levels=1, prom_levels=8, tasks=8, langs=1, experts=1, training=True, interleave=False), Model(name="nar", resp_levels=7, prom_levels=8, tasks=8, langs=1, experts=1, training=True, interleave=False), ]) def get(self, name=None): if not name: return [ Model(**model) for model in self._models ] for model in self._models: if model.name == name: return model raise ValueError @property def ar(self): return self.get("ar") @property def ar_nar(self): return self.get("ar+nar") @property def nar(self): return self.get("nar") @property def prom_levels(self): prom_levels = self._prom_levels for model in self._models: prom_levels = max(prom_levels, model.prom_levels) return prom_levels @property def tasks(self): tasks = 1 for model in self._models: tasks = max(tasks, model.tasks) return tasks @property def max_levels(self): return self._max_levels if self._max_levels > 0 else self.prom_levels @dataclass() class Hyperparameters: batch_size: int = 8 gradient_accumulation_steps: int = 32 gradient_clipping: int = 100 optimizer: str = "Adamw" torch_optimizer: bool = False optimizer_params: dict = field(default_factory=lambda: {}) learning_rate: float = 3.25e-4 scheduler_type: str = "" scheduler_params: dict = field(default_factory=lambda: {}) @dataclass() class Evaluation: batch_size: int = 64 frequency: int = 250 size: int = 64 steps: int = 500 ar_temperature: float = 1.0 nar_temperature: float = 0.2 load_disabled_engines: bool = True @dataclass() class DeepSpeed: zero_optimization_level: int = 0 use_compression_training: bool = False compression_bits: int = 8 inferencing: bool = False @cached_property def ds_cfg(self): scheduler_params = {} for k in cfg.hyperparameters.scheduler_params: scheduler_params[k] = cfg.hyperparameters.scheduler_params[k] if cfg.hyperparameters.scheduler_type == "WarmupDecayLR" and 'total_num_steps' not in scheduler_params: scheduler_params['total_num_steps'] = cfg.trainer.iterations ds_cfg = { "train_micro_batch_size_per_gpu": cfg.hyperparameters.batch_size, "gradient_accumulation_steps": cfg.hyperparameters.gradient_accumulation_steps, "optimizer": { "type": cfg.hyperparameters.optimizer, "params": { "lr": cfg.hyperparameters.learning_rate, } } if not cfg.hyperparameters.torch_optimizer else None, "scheduler": { "type": cfg.hyperparameters.scheduler_type, "params": scheduler_params, } if cfg.hyperparameters.scheduler_type != "" else None, "gradient_clipping": cfg.hyperparameters.gradient_clipping, "fp16": { "enabled": True, "auto_cast": True, } if cfg.trainer.weight_dtype.lower() == "float16" and not cfg.trainer.amp else None, "bf16": { "enabled": cfg.trainer.weight_dtype.lower() == "bfloat16" and not cfg.trainer.amp }, "compression_training": { "weight_quantization": { "shared_parameters":{ "enabled": True, "quantizer_kernel": True, "schedule_offset": 0, "quantize_groups": 64, "quantize_verbose": True, "quantization_type": "symmetric", "rounding": "nearest", "quantize_weight_in_forward": cfg.trainer.weight_dtype.lower() != "float16", # MoQ (quantize in optimization step) weight quantization is only supported for FP16 "fp16_mixed_quantize":{ "enabled": False, "quantize_change_ratio": 1 } }, "different_groups": { "wq1": { "params": { "start_bits": self.compression_bits, "target_bits": self.compression_bits, "quantization_period": 0 }, "modules": [ # "^.+?$" "blocks", # for transformer-based models "retnet", # for RetNets-based models ] } } }, "activation_quantization": { "shared_parameters":{ "enabled": True, "quantizer_kernel": True, "schedule_offset": 0, "quantize_groups": 64, "quantize_verbose": True, "quantization_type": "symmetric", "rounding": "nearest", "quantize_weight_in_forward": cfg.trainer.weight_dtype.lower() != "float16", # MoQ (quantize in optimization step) weight quantization is only supported for FP16 "fp16_mixed_quantize":{ "enabled": False, "quantize_change_ratio": 1 } }, "different_groups": { "aq1": { "params": { "bits": self.compression_bits, }, "modules": [ # "^.+?$" "blocks", # for transformer-based models "retnet", # for RetNets-based models ] } } }, } if self.use_compression_training else None, "zero_optimization": { "stage": self.zero_optimization_level, "contiguous_gradients": True, "overlap_comm": True, "reduce_scatter": True, "reduce_bucket_size": 5e8, "allgather_bucket_size": 5e8, "sub_group_size": 5e8, "round_robin_gradients": True, "offload_optimizer": { "device": "cpu", "pin_memory": True }, "offload_param": { "device": "cpu", "pin_memory": True }, "zero_quantized_weights": self.use_compression_training, "zero_hpz_partition_size": world_size(), "zero_quantized_gradients": self.use_compression_training, } if self.zero_optimization_level > 0 else None, "comms_logger": { "enabled": False } } null_keys = [ k for k in ds_cfg if not ds_cfg[k] ] for k in null_keys: del ds_cfg[k] if os.path.exists("./data/ds_config.json"): ds_cfg.update(json.load(open("./data/ds_config.json", "r", encoding="utf-8"))) return ds_cfg @dataclass() class Trainer: iterations: int = 100_000 save_tag: str = "step" load_tag: str | None = None save_on_oom: bool = True save_on_quit: bool = True export_on_save: bool = False export_on_quit: bool = False save_frequency: int = 100 keep_last_checkpoints: int = 0 load_state_dict: bool = False load_states: bool = True strict_loading: bool = True load_module_only: bool = False restart_step_count: bool = False activation_checkpointing: bool = True aggressive_optimizations: bool = False check_for_oom: bool = True gc_mode: str | None = None load_disabled_engines: bool = False weight_dtype: str = "float16" amp: bool = False load_webui: bool = False backend: str = "local" deepspeed: DeepSpeed = field(default_factory=lambda: DeepSpeed) @cached_property def dtype(self): if self.weight_dtype == "float16": return torch.float16 if self.weight_dtype == "bfloat16": return torch.bfloat16 return torch.float32 @dataclass() class Inference: backend: str = "local" weight_dtype: str = "float32" amp: bool = False normalize: bool = False # do NOT enable this unless you know exactly what you're doing use_vocos: bool = True recurrent_chunk_size: int = 0 recurrent_forward: bool = False @cached_property def dtype(self): if self.weight_dtype == "float16": return torch.float16 if self.weight_dtype == "bfloat16": return torch.bfloat16 if self.weight_dtype == "int8": return torch.int8 return torch.float32 @dataclass() class BitsAndBytes: enabled: bool = False injects: bool = False linear: bool = True embedding: bool = True @dataclass() class Config(_Config): device: str = "cuda" mode: str = "training" # "inferencing" experimental: bool = False # So I can stop commenting out things when committing dataset: Dataset = field(default_factory=lambda: Dataset) models: Models = field(default_factory=lambda: Models) hyperparameters: Hyperparameters = field(default_factory=lambda: Hyperparameters) evaluation: Evaluation = field(default_factory=lambda: Evaluation) trainer: Trainer = field(default_factory=lambda: Trainer) inference: Inference = field(default_factory=lambda: Inference) bitsandbytes: BitsAndBytes = field(default_factory=lambda: BitsAndBytes) @property def sample_rate(self): return 24_000 @property def distributed(self): return world_size() > 1 @cached_property def get_spkr(self): return eval(self.dataset.speaker_name_getter) @cached_property def get_spkr_group(self): return eval(self.dataset.speaker_group_getter) @cached_property def diskcache(self): if self.cfg_path is not None and self.dataset.cache: return diskcache.Cache(self.cache_dir).memoize return lambda: lambda x: x def load_yaml( self, config_path ): tmp = Config.from_yaml( config_path ) self.__dict__.update(tmp.__dict__) def load_hdf5( self, write=False ): if hasattr(self, 'hdf5'): self.hdf5.close() if self.distributed: self.dataset.hdf5_flag = "r" try: self.hdf5 = h5py.File(f'{self.cfg_path}/{self.dataset.hdf5_name}', 'a' if write else self.dataset.hdf5_flag) # to-do, have an easy to set flag that determines if training or creating the dataset except Exception as e: print("Error while opening HDF5 file:", f'{self.cfg_path}/{self.dataset.hdf5_name}', str(e)) self.dataset.use_hdf5 = False def format( self ): self.dataset = Dataset(**self.dataset) self.models = Models(**self.models) self.hyperparameters = Hyperparameters(**self.hyperparameters) self.evaluation = Evaluation(**self.evaluation) self.trainer = Trainer(**self.trainer) self.inference = Inference(**self.inference) self.bitsandbytes = BitsAndBytes(**self.bitsandbytes) self.trainer.deepspeed = DeepSpeed(**self.trainer.deepspeed) self.dataset.training = [ Path(dir) for dir in self.dataset.training ] self.dataset.validation = [ Path(dir) for dir in self.dataset.validation ] self.dataset.noise = [ Path(dir) for dir in self.dataset.noise ] cfg = Config.from_cli() # OmegaConf might not coerce the dicts into the @dataclass decorated classes, so we (try to) coerce them ourselves try: cfg.format() # cached_property stopped working... if cfg.dataset.use_hdf5: cfg.load_hdf5() except Exception as e: pass if __name__ == "__main__": print(cfg)