import sys import os argv = os.environ.get('VALLE_ARGS', None) if argv: sys.argv = sys.argv + argv.split(" ") import re import math import argparse import random import tempfile import functools import torch import numpy as np import torchaudio import gradio as gr from pathlib import Path # agony with HF's ZeroGPU spaces try: import spaces USING_SPACES = True spaces_zerogpu_decorator = spaces.GPU except Exception as e: USING_SPACES = False def spaces_zerogpu_decorator(func): return func # more agony, because gradio will not stay launched if directly called from the package, for who knows why # this allows me to directly copy this file rather than constantly edit it on the HF space repo if USING_SPACES: from vall_e.inference import TTS, cfg from vall_e.train import train from vall_e.utils import get_devices, setup_logging, timer from vall_e.utils.io import json_read, json_stringify from vall_e.emb.qnt import decode_to_wave from vall_e.data import get_lang_symmap, get_random_prompt from vall_e.models.arch import AVAILABLE_ATTENTIONS else: from .inference import TTS, cfg from .train import train from .utils import get_devices, setup_logging, timer from .utils.io import json_read, json_stringify from .emb.qnt import decode_to_wave from .data import get_lang_symmap, get_random_prompt from .models.arch import AVAILABLE_ATTENTIONS is_windows = sys.platform.startswith("win") tts = None layout = {} layout["inference_tts"] = {} layout["inference_stt"] = {} layout["training"] = {} layout["dataset"] = {} layout["settings"] = {} for k in layout.keys(): layout[k]["inputs"] = { "progress": None } layout[k]["outputs"] = {} layout[k]["buttons"] = {} # there's got to be a better way to go about this def gradio_wrapper(inputs): def decorated(fun): @functools.wraps(fun) def wrapped_function(*args, **kwargs): for i, key in enumerate(inputs): kwargs[key] = args[i] try: return fun(**kwargs) except Exception as e: raise gr.Error(str(e)) return wrapped_function return decorated # returns a list of models, assuming the models are placed under ./training/ or ./models/ or ./data/models/ def get_model_paths( paths=[Path("./training/"), Path("./models/"), Path("./data/models/")] ): configs = [] for path in paths: if not path.exists(): continue for yaml in path.glob("**/*.yaml"): if "/logs/" in str(yaml): continue configs.append( yaml ) for sft in path.glob("**/*.sft"): if "/logs/" in str(sft): continue configs.append( sft ) if is_windows: configs = [ str(p) for p in configs ] return configs def get_dtypes(): return ["float32", "float16", "bfloat16", "float8_e5m2", "float8_e4m3fn", "auto"] def get_attentions(): return AVAILABLE_ATTENTIONS + ["auto"] #@gradio_wrapper(inputs=layout["settings"]["inputs"].keys()) def load_model( config, device, dtype, attention ): gr.Info(f"Loading: {config}") try: init_tts( config=Path(config), restart=True, device=device, dtype=dtype, attention=attention ) except Exception as e: raise gr.Error(e) gr.Info(f"Loaded model") def get_speakers(): return cfg.dataset.training def get_languages(): return get_lang_symmap().keys() #@gradio_wrapper(inputs=layout["dataset"]["inputs"].keys()) def load_sample( speaker ): metadata_path = cfg.metadata_dir / f'{speaker}.json' metadata = json_read( metadata_path ) if not metadata: raise gr.Error(f"Metadata not found: {metadata_path}") key = random.choice( list(metadata.keys()) ) path = cfg.data_dir / speaker / f'{key}.enc' # to-do: get proper file extension data = json_stringify( metadata[key], pretty=True ) wav, sr = None, None if path.exists(): artifact = np.load(path, allow_pickle=True)[()] codes = torch.from_numpy(artifact["codes"].astype(int))[0].t().to(dtype=torch.int16, device=cfg.device) wav, sr = decode_to_wave( codes ) wav = wav.squeeze(0).cpu().numpy() return data, (sr, wav) def init_tts(config=None, lora=None, restart=False, device="cuda", dtype="auto", attention=None): global tts if tts is not None: if not restart: return tts del tts tts = None parser = argparse.ArgumentParser(allow_abbrev=False, add_help=False) parser.add_argument("--yaml", type=Path, default=os.environ.get('VALLE_YAML', None)) # os environ so it can be specified in a HuggingFace Space too parser.add_argument("--model", type=Path, default=os.environ.get('VALLE_MODEL', None)) # os environ so it can be specified in a HuggingFace Space too parser.add_argument("--lora", type=Path, default=os.environ.get('VALLE_LORA', None)) # os environ so it can be specified in a HuggingFace Space too parser.add_argument("--device", type=str, default=device) parser.add_argument("--amp", action="store_true") parser.add_argument("--dtype", type=str, default=dtype) parser.add_argument("--attention", type=str, default=attention) args, unknown = parser.parse_known_args() if config: if config.suffix == ".yaml" and not args.yaml: args.yaml = config elif config.suffix == ".sft" and not args.model: args.model = config if lora and not args.lora: args.lora = lora if args.yaml: config = args.yaml elif args.model: config = args.model if args.lora: lora = args.lora tts = TTS( config=config, lora=args.lora, device=args.device, dtype=args.dtype if args.dtype != "auto" else None, amp=args.amp, attention=args.attention ) return tts @spaces_zerogpu_decorator @gradio_wrapper(inputs=layout["inference_tts"]["inputs"].keys()) def do_inference_tts( progress=gr.Progress(track_tqdm=True), *args, **kwargs ): if not cfg.models: raise Exception("No model loaded.") if kwargs.pop("dynamic-sampling", False): kwargs['min-ar-temperature'] = 0.01 if kwargs['ar-temperature'] > 0.01 else 0.0 kwargs['min-nar-temperature'] = 0.0 # 0.85 if kwargs['nar-temperature'] > 0.85 else 0.0 # should probably disable it for the NAR else: kwargs['min-ar-temperature'] = -1 kwargs['min-nar-temperature'] = -1 parser = argparse.ArgumentParser(allow_abbrev=False, add_help=False) # I'm very sure I can procedurally generate this list parser.add_argument("--text", type=str, default=kwargs["text"]) parser.add_argument("--task", type=str, default="tts") parser.add_argument("--references", type=str, default=kwargs["reference"]) parser.add_argument("--language", type=str, default=kwargs["language"]) parser.add_argument("--input-prompt-length", type=float, default=kwargs["input-prompt-length"]) parser.add_argument("--input-prompt-prefix", action='store_true', default=kwargs["input-prompt-prefix"]) parser.add_argument("--max-duration", type=int, default=int(kwargs["max-duration"]*cfg.dataset.frames_per_second)) parser.add_argument("--max-levels", type=int, default=kwargs["max-levels"]) parser.add_argument("--max-steps", type=int, default=kwargs["max-steps"]) parser.add_argument("--ar-temperature", type=float, default=kwargs["ar-temperature"]) parser.add_argument("--nar-temperature", type=float, default=kwargs["nar-temperature"]) parser.add_argument("--min-ar-temperature", type=float, default=kwargs["min-ar-temperature"]) parser.add_argument("--min-nar-temperature", type=float, default=kwargs["min-nar-temperature"]) parser.add_argument("--prefix-silence", type=float, default=kwargs["prefix-silence"]) parser.add_argument("--top-p", type=float, default=kwargs["top-p"]) parser.add_argument("--top-k", type=int, default=kwargs["top-k"]) parser.add_argument("--top-no", type=float, default=kwargs["top-no"]) parser.add_argument("--min-p", type=float, default=kwargs["min-p"]) parser.add_argument("--repetition-penalty", type=float, default=kwargs["repetition-penalty"]) parser.add_argument("--repetition-penalty-decay", type=float, default=kwargs["repetition-penalty-decay"]) parser.add_argument("--length-penalty", type=float, default=kwargs["length-penalty"]) parser.add_argument("--beam-width", type=int, default=kwargs["beam-width"]) parser.add_argument("--mirostat-tau", type=float, default=kwargs["mirostat-tau"]) parser.add_argument("--mirostat-eta", type=float, default=kwargs["mirostat-eta"]) parser.add_argument("--dry-multiplier", type=float, default=kwargs["dry-multiplier"]) parser.add_argument("--dry-base", type=float, default=kwargs["dry-base"]) parser.add_argument("--dry-allowed-length", type=int, default=kwargs["dry-allowed-length"]) parser.add_argument("--entropix-sampling", action="store_true") parser.add_argument("--layer-skip", action="store_true") parser.add_argument("--layer-skip-exit-layer", type=int, default=kwargs["layer-skip-exit-layer"]) parser.add_argument("--layer-skip-entropy-threshold", type=int, default=kwargs["layer-skip-entropy-threshold"]) parser.add_argument("--layer-skip-varentropy-threshold", type=int, default=kwargs["layer-skip-varentropy-threshold"]) parser.add_argument("--refine-on-stop", action="store_true") parser.add_argument("--denoise-start", type=float, default=0.0) parser.add_argument("--cfg-strength", type=float, default=kwargs['cfg-strength']) args, unknown = parser.parse_known_args() if is_windows: tmp = tempfile.NamedTemporaryFile(suffix='.wav', delete=False) else: tmp = tempfile.NamedTemporaryFile(suffix='.wav') """ if not args.references: raise Exception("No reference audio provided.") """ if kwargs.pop("entropix-sampling", False): args.entropix_sampling = True if kwargs.pop("layer-skip", False): args.layer_skip = True if kwargs.pop("refine-on-stop", False): args.refine_on_stop = True tts = init_tts() gr.Info("Inferencing...") # icky modality = kwargs.get("modality") if modality: for name, engine in tts.engines.items(): if modality == "AR+NAR": engine.hyper_config.capabilities = ["ar", "nar"] elif modality == "NAR-len": engine.hyper_config.capabilities = ["nar", "len"] sampling_kwargs = dict( max_steps=args.max_steps, max_levels=args.max_levels, max_duration=args.max_duration, ar_temperature=args.ar_temperature, nar_temperature=args.nar_temperature, min_ar_temperature=args.min_ar_temperature, min_nar_temperature=args.min_nar_temperature, top_p=args.top_p, top_k=args.top_k, min_p=args.min_p, top_no=args.top_no, repetition_penalty=args.repetition_penalty, repetition_penalty_decay=args.repetition_penalty_decay, length_penalty=args.length_penalty, beam_width=args.beam_width, mirostat_tau=args.mirostat_tau, mirostat_eta=args.mirostat_eta, dry_multiplier=args.dry_multiplier, dry_base=args.dry_base, dry_allowed_length=args.dry_allowed_length, entropix_sampling=args.entropix_sampling, layer_skip=args.layer_skip, layer_skip_exit_layer=args.layer_skip_exit_layer, layer_skip_entropy_threshold=args.layer_skip_entropy_threshold, layer_skip_varentropy_threshold=args.layer_skip_varentropy_threshold, refine_on_stop=args.refine_on_stop, denoise_start=args.denoise_start, prefix_silence=args.prefix_silence, input_prompt_prefix=args.input_prompt_prefix, input_prompt_length=args.input_prompt_length, cfg_strength=args.cfg_strength, ) with timer("Inferenced in", callback=lambda msg: gr.Info( msg )) as t: wav, sr = tts.inference( text=args.text, language=args.language, task=args.task, references=args.references.split(";") if args.references is not None else [], **sampling_kwargs, ) wav = wav.squeeze(0).cpu().numpy() return (sr, wav) @gradio_wrapper(inputs=layout["inference_stt"]["inputs"].keys()) def do_inference_stt( progress=gr.Progress(track_tqdm=True), *args, **kwargs ): if not cfg.models: raise Exception("No model loaded.") if kwargs.pop("dynamic-sampling", False): kwargs['min-ar-temperature'] = 0.85 if kwargs['ar-temperature'] > 0.85 else 0.0 else: kwargs['min-ar-temperature'] = -1 parser = argparse.ArgumentParser(allow_abbrev=False, add_help=False) # I'm very sure I can procedurally generate this list parser.add_argument("--task", type=str, default="tts") parser.add_argument("--references", type=str, default=kwargs["reference"]) parser.add_argument("--max-duration", type=int, default=0) parser.add_argument("--language", type=str, default=kwargs["language"]) parser.add_argument("--ar-temperature", type=float, default=kwargs["ar-temperature"]) parser.add_argument("--min-ar-temperature", type=float, default=kwargs["min-ar-temperature"]) parser.add_argument("--top-p", type=float, default=kwargs["top-p"]) parser.add_argument("--top-k", type=int, default=kwargs["top-k"]) parser.add_argument("--min-p", type=float, default=kwargs["min-p"]) parser.add_argument("--repetition-penalty", type=float, default=kwargs["repetition-penalty"]) parser.add_argument("--repetition-penalty-decay", type=float, default=kwargs["repetition-penalty-decay"]) parser.add_argument("--length-penalty", type=float, default=kwargs["length-penalty"]) parser.add_argument("--beam-width", type=int, default=kwargs["beam-width"]) parser.add_argument("--mirostat-tau", type=float, default=kwargs["mirostat-tau"]) parser.add_argument("--mirostat-eta", type=float, default=kwargs["mirostat-eta"]) parser.add_argument("--dry-multiplier", type=float, default=kwargs["dry-multiplier"]) parser.add_argument("--dry-base", type=float, default=kwargs["dry-base"]) parser.add_argument("--dry-allowed-length", type=int, default=kwargs["dry-allowed-length"]) args, unknown = parser.parse_known_args() """ if not args.references: raise Exception("No reference audio provided.") """ args.references = args.references.split(";") if args.references is not None else [] if args.max_duration == 0: for i, path in enumerate( args.references ): metadata = torchaudio.info(path) duration = metadata.num_frames / metadata.sample_rate args.max_duration += duration args.max_duration = math.floor( args.max_duration * 20 ) # assume 20 tokens per second if kwargs.pop("entropix-sampling", False): args.entropix_sampling = True tts = init_tts() sampling_kwargs = dict( max_duration=args.max_duration, ar_temperature=args.ar_temperature, min_ar_temperature=args.min_ar_temperature, top_p=args.top_p, top_k=args.top_k, min_p=args.min_p, repetition_penalty=args.repetition_penalty, repetition_penalty_decay=args.repetition_penalty_decay, length_penalty=args.length_penalty, beam_width=args.beam_width, mirostat_tau=args.mirostat_tau, mirostat_eta=args.mirostat_eta, dry_multiplier=args.dry_multiplier, dry_base=args.dry_base, dry_allowed_length=args.dry_allowed_length, ) gr.Info("Inferencing...") with timer("Inferenced in") as t: text = tts.inference( text="", language=args.language, task="stt", references=args.references, **sampling_kwargs, ) return text """ @gradio_wrapper(inputs=layout["training"]["inputs"].keys()) def do_training( progress=gr.Progress(track_tqdm=True), *args, **kwargs ): while True: metrics = next(it) yield metrics """ # setup args parser = argparse.ArgumentParser(allow_abbrev=False) parser.add_argument("--yaml", type=Path, default=os.environ.get('VALLE_YAML', None)) # os environ so it can be specified in a HuggingFace Space too parser.add_argument("--model", type=Path, default=os.environ.get('VALLE_MODEL', None)) # os environ so it can be specified in a HuggingFace Space too parser.add_argument("--listen", default=None, help="Path for Gradio to listen on") parser.add_argument("--share", action="store_true") parser.add_argument("--render_markdown", action="store_true", default="VALLE_YAML" in os.environ) args, unknown = parser.parse_known_args() args.listen_host = None args.listen_port = None args.listen_path = None if args.listen: try: match = re.findall(r"^(?:(.+?):(\d+))?(\/.*?)?$", args.listen)[0] args.listen_host = match[0] if match[0] != "" else "127.0.0.1" args.listen_port = match[1] if match[1] != "" else None args.listen_path = match[2] if match[2] != "" else "/" except Exception as e: pass if args.listen_port is not None: args.listen_port = int(args.listen_port) if args.listen_port == 0: args.listen_port = None # setup gradio ui = gr.Blocks() with ui: with gr.Tab("Inference"): with gr.Tab("Text-to-Speech"): with gr.Row(): with gr.Column(scale=8): layout["inference_tts"]["inputs"]["text"] = gr.Textbox(lines=5, value=get_random_prompt, label="Input Prompt") with gr.Row(): with gr.Column(scale=1): layout["inference_tts"]["inputs"]["reference"] = gr.Audio(label="Audio Input", sources=["upload"], type="filepath") #, info="Reference audio for TTS") # layout["inference_tts"]["stop"] = gr.Button(value="Stop") layout["inference_tts"]["outputs"]["output"] = gr.Audio(label="Output") layout["inference_tts"]["buttons"]["inference"] = gr.Button(value="Inference") with gr.Column(scale=7): with gr.Tab("Basic Settings"): with gr.Row(): layout["inference_tts"]["inputs"]["max-duration"] = gr.Slider(value=12, minimum=1, maximum=32, step=0.1, label="Maximum Seconds", info="Limits how many steps to perform in the AR pass.") layout["inference_tts"]["inputs"]["input-prompt-length"] = gr.Slider(value=5.0, minimum=0.0, maximum=12.0, step=0.05, label="Input Prompt Repeat/Trim Length", info="Repeats and trims the input prompt down to X seconds. Set 0 to disable.") with gr.Row(): layout["inference_tts"]["inputs"]["ar-temperature"] = gr.Slider(value=1.0, minimum=0.0, maximum=1.5, step=0.05, label="Temperature (AR)", info="Modifies the randomness from the samples in the AR. (0 to greedy* sample)") layout["inference_tts"]["inputs"]["nar-temperature"] = gr.Slider(value=0.0, minimum=0.0, maximum=1.5, step=0.05, label="Temperature (NAR)", info="Modifies the randomness from the samples in the NAR. (0 to greedy sample)") with gr.Row(): layout["inference_tts"]["inputs"]["cfg-strength"] = gr.Slider(value=3.0, minimum=0.0, maximum=14.0, step=0.05, label="CFG Strength", info="Classifier Free Guidance scale") layout["inference_tts"]["inputs"]["language"] = gr.Dropdown(choices=get_languages(), label="Language", value="en") with gr.Tab("Sampler Settings"): with gr.Row(): layout["inference_tts"]["inputs"]["top-p"] = gr.Slider(value=1.0, minimum=0.0, maximum=1.0, step=0.05, label="Top P", info=r"Limits the samples that are outside the top P% of probabilities.") layout["inference_tts"]["inputs"]["top-k"] = gr.Slider(value=0, minimum=0, maximum=1024, step=1, label="Top K", info="Limits the samples to the top K of probabilities.") layout["inference_tts"]["inputs"]["top-no"] = gr.Slider(value=0, minimum=0, maximum=2, step=0.05, label="Top-nσ", info="Performs top-nσ logits processing.") layout["inference_tts"]["inputs"]["min-p"] = gr.Slider(value=0.0, minimum=0.0, maximum=1.0, step=0.05, label="Min P") with gr.Row(): layout["inference_tts"]["inputs"]["repetition-penalty"] = gr.Slider(value=1.0, minimum=0.0, maximum=5.0, step=0.05, label="Repetition Penalty", info="Incurs a penalty to tokens based on how often they appear in a sequence.") layout["inference_tts"]["inputs"]["repetition-penalty-decay"] = gr.Slider(value=0.0, minimum=-2.0, maximum=2.0, step=0.05, label="Repetition Penalty Length Decay", info="Modifies the reptition penalty based on how far back in time the token appeared in the sequence.") layout["inference_tts"]["inputs"]["length-penalty"] = gr.Slider(value=0.0, minimum=-2.0, maximum=2.0, step=0.05, label="Length Penalty", info="(AR only) Modifies the probability of a stop token based on the current length of the sequence.") with gr.Row(): layout["inference_tts"]["inputs"]["mirostat-tau"] = gr.Slider(value=0.0, minimum=0.0, maximum=8.0, step=0.05, label="Mirostat τ (Tau)", info="The \"surprise\" value when performing mirostat sampling. 0 to disable.") layout["inference_tts"]["inputs"]["mirostat-eta"] = gr.Slider(value=0.0, minimum=0.0, maximum=2.0, step=0.05, label="Mirostat η (Eta)", info="The \"learning rate\" during mirostat sampling applied to the maximum surprise.") with gr.Row(): layout["inference_tts"]["inputs"]["dry-multiplier"] = gr.Slider(value=0.0, minimum=0.0, maximum=8.0, step=0.05, label="DRY Multiplier", info="The multiplying factor for the DRY score penalty (0 to disable DRY sampling).") layout["inference_tts"]["inputs"]["dry-base"] = gr.Slider(value=1.75, minimum=0.0, maximum=8.0, step=0.05, label="DRY Base", info="The base of the exponent in the DRY score penalty") layout["inference_tts"]["inputs"]["dry-allowed-length"] = gr.Slider(value=2, minimum=0, maximum=75, step=1, label="Allowed Length", info="The maximimum length a token can be to perform DRY penalty with.") with gr.Tab("Experimental Settings", visible=cfg.experimental): with gr.Row(): layout["inference_tts"]["inputs"]["max-steps"] = gr.Slider(value=25, minimum=1, maximum=500, step=1, label="Max NAR Steps", info="Limits how many steps to perform in the NAR (demask) pass.") layout["inference_tts"]["inputs"]["max-levels"] = gr.Slider(value=7, minimum=0, maximum=7, step=1, label="Max NAR Levels", info="Limits how many steps to perform in the NAR pass.") with gr.Row(): layout["inference_tts"]["inputs"]["input-prompt-prefix"] = gr.Checkbox(label="Input Prompt as Prefix", info="Treats the input prompt clip as the prefix of the generated sequence.") layout["inference_tts"]["inputs"]["prefix-silence"] = gr.Slider(value=0.0, minimum=0.0, maximum=1.0, step=0.05, label="Silence Prefix Duration", info="Amount of silence to prefix to the output response before beginning inference.") layout["inference_tts"]["inputs"]["modality"] = gr.Dropdown(value="Auto", choices=["Auto", "AR+NAR", "NAR-len"], label="Modality", info="Whether to inference with the AR+NAR or through the NAR-len.") with gr.Row(): layout["inference_tts"]["inputs"]["beam-width"] = gr.Slider(value=0, minimum=0, maximum=32, step=1, label="Beam Width", info="Number of branches to search through for beam search sampling.") layout["inference_tts"]["inputs"]["dynamic-sampling"] = gr.Checkbox(label="Dynamic Temperature", info="Dynamically adjusts the temperature based on the highest confident predicted token per sampling step.") layout["inference_tts"]["inputs"]["entropix-sampling"] = gr.Checkbox(label="Entropix Sampling", info="Dynamically samples based on entropy/varentropy values from the logits / attention scores.") with gr.Row(): layout["inference_tts"]["inputs"]["layer-skip"] = gr.Checkbox(label="Layer Skip", info="Performs self-speculative early exit 'sampling'") layout["inference_tts"]["inputs"]["refine-on-stop"] = gr.Checkbox(label="Refine on ", info="Uses the last step's logits for the AR sequence instead.") with gr.Row(): layout["inference_tts"]["inputs"]["layer-skip-exit-layer"] = gr.Slider(value=11, minimum=0, maximum=11, step=1, label="Layer Skip Exit Layer", info="Maximum model layer to exit early from.") layout["inference_tts"]["inputs"]["layer-skip-entropy-threshold"] = gr.Slider(value=0.1, minimum=0, maximum=1.0, step=0.01, label="Layer Skip Entropy Threshold", info="Entropy threshold for early-exit") layout["inference_tts"]["inputs"]["layer-skip-varentropy-threshold"] = gr.Slider(value=0.1, minimum=0, maximum=1.0, step=0.01, label="Layer Skip Varentropy Threshold", info="Varentropy threshold for early-exit") layout["inference_tts"]["buttons"]["inference"].click( fn=do_inference_tts, inputs=[ x for x in layout["inference_tts"]["inputs"].values() if x is not None], outputs=[ x for x in layout["inference_tts"]["outputs"].values() if x is not None] ) with gr.Tab("Speech to Text"): with gr.Row(): with gr.Column(scale=8): layout["inference_stt"]["outputs"]["ouput"] = gr.Textbox(lines=1, label="Output Transcription") with gr.Row(): with gr.Column(scale=1): layout["inference_stt"]["inputs"]["reference"] = gr.Audio(label="Audio Input", sources=["upload"], type="filepath") #, info="Reference audio for TTS") # layout["inference_stt"]["stop"] = gr.Button(value="Stop") layout["inference_stt"]["buttons"]["inference"] = gr.Button(value="Inference") with gr.Column(scale=7): with gr.Tab("Basic Settings"): with gr.Row(): layout["inference_stt"]["inputs"]["ar-temperature"] = gr.Slider(value=0.0, minimum=0.0, maximum=1.5, step=0.05, label="Temperature (AR)", info="Modifies the randomness from the samples in the AR. (0 to greedy sample)") with gr.Row(): layout["inference_stt"]["inputs"]["dynamic-sampling"] = gr.Checkbox(label="Dynamic Temperature", info="Dynamically adjusts the temperature based on the highest confident predicted token per sampling step.") layout["inference_stt"]["inputs"]["language"] = gr.Dropdown(choices=get_languages(), label="Language", value="en") with gr.Tab("Sampler Settings"): with gr.Row(): layout["inference_stt"]["inputs"]["top-p"] = gr.Slider(value=1.0, minimum=0.0, maximum=1.0, step=0.05, label="Top P", info=r"Limits the samples that are outside the top P% of probabilities.") layout["inference_stt"]["inputs"]["top-k"] = gr.Slider(value=0, minimum=0, maximum=1024, step=1, label="Top K", info="Limits the samples to the top K of probabilities.") layout["inference_stt"]["inputs"]["min-p"] = gr.Slider(value=0.0, minimum=0.0, maximum=1.0, step=0.05, label="Min P") layout["inference_stt"]["inputs"]["beam-width"] = gr.Slider(value=0, minimum=0, maximum=32, step=1, label="Beam Width", info="Number of branches to search through for beam search sampling.") with gr.Row(): layout["inference_stt"]["inputs"]["repetition-penalty"] = gr.Slider(value=1.0, minimum=-2.0, maximum=2.0, step=0.05, label="Repetition Penalty", info="Incurs a penalty to tokens based on how often they appear in a sequence.") layout["inference_stt"]["inputs"]["repetition-penalty-decay"] = gr.Slider(value=0.0, minimum=-2.0, maximum=2.0, step=0.05, label="Repetition Penalty Length Decay", info="Modifies the reptition penalty based on how far back in time the token appeared in the sequence.") layout["inference_stt"]["inputs"]["length-penalty"] = gr.Slider(value=0.0, minimum=-2.0, maximum=2.0, step=0.05, label="Length Penalty", info="(AR only) Modifies the probability of a stop token based on the current length of the sequence.") with gr.Row(): layout["inference_stt"]["inputs"]["mirostat-tau"] = gr.Slider(value=0.0, minimum=0.0, maximum=8.0, step=0.05, label="Mirostat τ (Tau)", info="The \"surprise\" value when performing mirostat sampling. 0 to disable.") layout["inference_stt"]["inputs"]["mirostat-eta"] = gr.Slider(value=0.0, minimum=0.0, maximum=2.0, step=0.05, label="Mirostat η (Eta)", info="The \"learning rate\" during mirostat sampling applied to the maximum surprise.") with gr.Row(): layout["inference_stt"]["inputs"]["dry-multiplier"] = gr.Slider(value=0.0, minimum=0.0, maximum=8.0, step=0.05, label="DRY Multiplier", info="The multiplying factor for the DRY score penalty (0 to disable DRY sampling).") layout["inference_stt"]["inputs"]["dry-base"] = gr.Slider(value=1.75, minimum=0.0, maximum=8.0, step=0.05, label="DRY Base", info="The base of the exponent in the DRY score penalty") layout["inference_stt"]["inputs"]["dry-allowed-length"] = gr.Slider(value=2, minimum=0, maximum=75, step=1, label="Allowed Length", info="The maximimum length a token can be to perform DRY penalty with.") layout["inference_stt"]["buttons"]["inference"].click( fn=do_inference_stt, inputs=[ x for x in layout["inference_stt"]["inputs"].values() if x is not None], outputs=[ x for x in layout["inference_stt"]["outputs"].values() if x is not None] ) """ with gr.Tab("Training"): with gr.Row(): with gr.Column(scale=1): layout["training"]["outputs"]["console"] = gr.Textbox(lines=8, label="Console Log") with gr.Row(): with gr.Column(scale=1): layout["training"]["buttons"]["train"] = gr.Button(value="Train") layout["training"]["buttons"]["train"].click( fn=do_training, outputs=[ x for x in layout["training"]["outputs"].values() if x is not None], ) """ if not USING_SPACES: with gr.Tab("Dataset"): with gr.Row(): with gr.Column(scale=7): layout["dataset"]["outputs"]["transcription"] = gr.Textbox(lines=5, label="Sample Metadata") with gr.Column(scale=1): layout["dataset"]["inputs"]["speaker"] = gr.Dropdown(choices=get_speakers(), label="Speakers") layout["dataset"]["outputs"]["audio"] = gr.Audio(label="Output") layout["dataset"]["buttons"]["sample"] = gr.Button(value="Sample") layout["dataset"]["buttons"]["sample"].click( fn=load_sample, inputs=[ x for x in layout["dataset"]["inputs"].values() if x is not None], outputs=[ x for x in layout["dataset"]["outputs"].values() if x is not None], ) if not USING_SPACES: with gr.Tab("Settings"): with gr.Row(): with gr.Column(scale=7): with gr.Row(): layout["settings"]["inputs"]["models"] = gr.Dropdown(choices=get_model_paths(), value=args.yaml or args.model, label="Model") layout["settings"]["inputs"]["device"] = gr.Dropdown(choices=get_devices(), value="cuda:0", label="Device") layout["settings"]["inputs"]["dtype"] = gr.Dropdown(choices=get_dtypes(), value="auto", label="Precision") layout["settings"]["inputs"]["attentions"] = gr.Dropdown(choices=get_attentions(), value="auto", label="Attentions") with gr.Column(scale=1): layout["settings"]["buttons"]["load"] = gr.Button(value="Load Model") layout["settings"]["buttons"]["load"].click( fn=load_model, inputs=[ x for x in layout["settings"]["inputs"].values() if x is not None], outputs=[ x for x in layout["settings"]["outputs"].values() if x is not None], ) if os.path.exists("README.md") and args.render_markdown: md = open("README.md", "r", encoding="utf-8").read() # remove HF's metadata if md.startswith("---\n"): md = "".join(md.split("---")[2:]) gr.Markdown(md) def start( lock=True ): setup_logging() if not USING_SPACES: ui.queue(max_size=8) ui.launch(share=args.share, server_name=args.listen_host, server_port=args.listen_port, prevent_thread_lock=not lock) else: ui.queue().launch() if __name__ == "__main__": start()