""" # an AR + NAR model that handles: * inferencing the primary RVQ level in an autoregressive manner (AR) * inferencing the remaining RVQ levels in parallel (NAR) This model can fully handle being trained as a unified model (AR + NAR) or separate models (AR | NAR). It's recommended to train as a unified model, then "distill" knowledge of each tasks separately, just in case. """ from .base import Base, list_to_tensor, Categorical from ..config import cfg import torch from torch.nn.utils.rnn import pad_sequence import random import math from einops import rearrange from torch import Tensor from tqdm import trange from time import perf_counter import logging _logger = logging.getLogger(__name__) from ..emb.qnt import trim, encode_as_embedding, get_silence from ..utils import get_devices, setup_logging, timer from .lora import enable_lora def clamp(n, lo, hi): return max(lo, min(n, hi)) class AR_NAR(Base): def forward( self, text_list: list[Tensor], proms_list: list[Tensor], resps_list: list[Tensor] | None = None, task_list: list[Tensor] | None = None, lang_list: list[Tensor] | None = None, tone_list: list[Tensor] | None = None, len_list: list[Tensor] | None = None, training: bool | None = None, max_steps: int = 1000, max_levels: int = 0, input_prompt_prefix: bool = False, prefix_silence: float = 1.0, sampling_temperature: float = 1.0, sampling_min_temperature: float = -1.0, sampling_top_k: int = -100, sampling_top_p: float = 1.0, sampling_min_p: float = 0.0, sampling_repetition_penalty: float = 1.0, sampling_repetition_penalty_decay: float = 0.0, sampling_length_penalty: float = 0.0, sampling_beam_width: int = 0, sampling_mirostat_tau: float = 0.0, sampling_mirostat_eta: float = 0.1, sampling_dry_multiplier=0.0, sampling_dry_base=1.75, sampling_dry_allowed_length=2, sampling_entropix=False, disable_tqdm=False, use_lora=None, ): text_task = [ "stt" ] if text_list is not None: default_task = "tts" device = text_list[0].device batch_size = len(text_list) else: default_task = "stt" device = resps_list[0].device batch_size = len(resps_list) # generate task list if not provided if task_list is None: task_list = [ default_task for _ in range(batch_size) ] has_none = resps_list is None or text_list is None if not has_none: for i, task in enumerate( task_list ): if resps_list[i] is None or text_list[i] is None: has_none = True break # is training or NAR if not has_none: n_levels_set = {r.shape[-1] for r in resps_list} n_levels = next(iter(n_levels_set)) if training is None: training = n_levels == self.n_resp_levels # is training if training: # specifies how to sample probabilities of which RVQ levels to train against rvq_levels_p = self.config.experimental.rvq_levels_p if self.config is not None else "equal" # determines which RVQ level to target per batch quant_level_range = self.config.experimental.rvq_level_range if self.config is not None and self.config.experimental.rvq_level_range else [ 0 if self.causal else 1, self.n_resp_levels - 1 ] # rate to perform token dropout errors token_dropout_error = self.config.experimental.token_dropout_error # RVQ levels to apply token dropout on token_dropout_rvq_levels = self.config.experimental.token_dropout_rvq_levels # implicitly set it to all levels if not token_dropout_rvq_levels: token_dropout_rvq_levels = [0, self.resp_levels - 1] # allow passing a specific distribution of RVQ levels rvq_levels_p = rvq_levels_p if isinstance(rvq_levels_p, list) else [] if not rvq_levels_p: lo, hi = quant_level_range[0], quant_level_range[1] + 1 # randomly select a target RVQ-bin level (0 being AR, 1+ being NAR) if rvq_levels_p == "equal": rvq_levels_p = [ i for i in range( lo, hi ) ] else: # yuck rvq_levels_p = sum([[i for _ in range(hi - i)] for i in range( lo, hi ) ], []) # input RVQ levels quant_levels = [ random.choice( rvq_levels_p ) for i in range(batch_size) ] for i, task in enumerate( task_list ): if task in text_task: quant_levels[i] = 0 # self.n_resp_levels - 1 # trim resps to only contain all levels below the target level resps_list = [r if t in text_task else r[..., :l+1] for r, l, t in zip(resps_list, quant_levels, task_list)] # tensor to cat for RVQ level 0 text_stop_sequence = torch.tensor([[2] * 1], device=device, dtype=torch.int16) audio_stop_sequence = torch.tensor([[self.stop_token] * 1], device=device, dtype=torch.int16) # I hate python's value/reference semantics so much for i, quant_level, resps, proms, task in zip(range(batch_size), quant_levels, resps_list, proms_list, task_list): # cap quant_level if it exceeds its corresponding resp/prom if quant_level >= resps.shape[-1]: quant_levels[i] = resps.shape[-1] - 1 # proms could be a Tensor, list[Tensor], or None if isinstance( proms, torch.Tensor ): if quant_level >= proms.shape[-1]: quant_levels[i] = proms.shape[-1] - 1 elif isinstance( proms, list ): for j, prom in enumerate( proms ): if not isinstance( prom, torch.Tensor ): continue if quant_level >= prom.shape[-1]: quant_levels[i] = prom.shape[-1] - 1 # apply token dropout error compensation if token_dropout_error > 0 and (token_dropout_rvq_levels[0] <= quant_level and quant_level <= token_dropout_rvq_levels[1]): steps = resps.shape[0] for l in range( quant_level ): for t in range( steps ): token = resps[t, l].item() if random.random() < token_dropout_error: offset = 1 * ( 1 if random.random() < 0.5 else -1 ) resps_list[i][t, l] = clamp(token + offset, 1, 1022) # +- 1 # only apply stop token for RVQ level 0 if quant_level <= 0: # append stop tokens for AR if task in text_task: #text_list[i] = torch.cat([ resps, text_stop_sequence ]) ... else: resps_list[i] = torch.cat([ resps, audio_stop_sequence ]) inputs = self.inputs( text_list=text_list, proms_list=proms_list, resps_list=resps_list, lang_list=lang_list, tone_list=tone_list, task_list=task_list, quant_levels=quant_levels, ) return super().forward( inputs=inputs, quant_levels=quant_levels, # could technically just grab this from the above inputs since they're included as an RVQ level token ) # is NAR if max_levels == 0: max_levels = self.n_max_levels - 1 # expand if given a raw 1D tensor for i, resp in enumerate(resps_list): if resp.dim() == 1: resps_list[i] = resp.unsqueeze(-1) prev_list = resps_list for n in trange( max_levels, desc="NAR", disable=disable_tqdm ): level = prev_list[0].shape[-1] if level >= max_levels + 1: # min(max_levels + 1, self.n_resp_levels): # commented out to experiment with exceeding trained levels break if cfg.lora is not None: enable_lora( self, cfg.lora.active_level( level ) if use_lora is None else use_lora ) quant_levels = [ level for _ in range(batch_size) ] # torch.full((len(text_list),), level) inputs = self.inputs( text_list=text_list, proms_list=proms_list, resps_list=prev_list, lang_list=lang_list, tone_list=tone_list, quant_levels=quant_levels, ) output = super().forward( inputs=inputs, quant_levels=quant_levels, ) logits, state = output.logits, output.state sampled = super().sample( logits=logits, prev_list=prev_list, quant_levels=quant_levels, temperature=sampling_temperature, min_temperature=sampling_min_temperature, top_p=sampling_top_p, top_k=sampling_top_k, min_p=sampling_min_p, #repetition_penalty=sampling_repetition_penalty, #repetition_penalty_decay=sampling_repetition_penalty_decay, #length_penalty=sampling_length_penalty, #beam_width=sampling_beam_width, #mirostat=mirostat, ) resps_list = sampled[0] prev_list = [ torch.cat([rs, r.unsqueeze(-1).to(device=device)], dim=-1) for rs, r in zip(prev_list, resps_list) ] return prev_list # is AR if cfg.lora is not None: enable_lora( self, cfg.lora.active_level( 0 ) if use_lora is None else use_lora ) # STT start_slice = [ 0 for _ in range(batch_size) ] sequence_list = [ torch.zeros(0, device=device).to(torch.int16) for _ in range(batch_size) ] stopped = torch.zeros(batch_size, device=device).bool() audio_stop_token = self.stop_token text_stop_token = 2 state = None mirostat = [ {"n": 1024, "tau": sampling_mirostat_tau, "eta": sampling_mirostat_eta, "max_surprise": sampling_mirostat_eta * 2, "error_surprise": 0, "running_total_surprise": 0} ] * batch_size if sampling_mirostat_tau > 0.0 else None scores = [ 1.0 ] * sampling_beam_width entropies = [] # ick low_temperature = sampling_repetition_penalty == 1.0 and sampling_temperature < 0.5 low_temperature_range = cfg.dataset.frames_per_second * 3 original_sampling_temperature = sampling_temperature original_sampling_repetition_penalty = sampling_repetition_penalty original_sampling_repetition_penalty_decay = sampling_repetition_penalty_decay for i, sequence in enumerate( sequence_list ): # add to text for STT if task_list[i] in text_task: start_slice[i] = 1 sequence_list[i] = torch.cat([sequence_list[i], torch.tensor([1], dtype=torch.int16, device=device)]) # treat input prompt as initial resp (by prefixing with the prompt instead) elif input_prompt_prefix: start_slice[i] = proms_list[i].shape[0] sequence_list[i], proms_list[i] = proms_list[i][:, 0], sequence_list[i] elif prefix_silence > 0: sequence_list[i] = get_silence(prefix_silence, device=sequence_list[i].device) sequence_list[i] = sequence_list[i][:, 0] # start_slice[i] = sequence_list[i].shape[0] # get next in sequence for n in trange(max_steps // max(1, self.causal_size), desc="AR", disable=disable_tqdm): # it would technically be faster to just append the new token's embedding to the inputs, but there's a VERY small performance gain from doing it, so it's not worth it text_list = [ sequence_list[i] if task in text_task else text_list[i] for i, task in enumerate(task_list) ] resps_list = [ sequence_list[i] if task not in text_task else resps_list[i] for i, task in enumerate(task_list) ] # greedy sampling in the AR *does* work, but requires some quasi-exotic sampling to work around the initial burst of garbage from polluting the rest of the sequence # naturally, rep pen wrangles this initial burst of noise, but naively relying on rep_pen is no good, as it fails after ~6 seconds of audio # however, switching to a default sampling temperature with "clean greedy sampled codes" will make the rest of sequence sound as if it were greedy sampled # to-do: tune these values, maybe have it factor based on confidence scores or something if low_temperature: enabled = n < low_temperature_range sampling_repetition_penalty = 1.5 if enabled else original_sampling_repetition_penalty sampling_repetition_penalty_decay = 0.0 if enabled else original_sampling_repetition_penalty_decay sampling_temperature = original_sampling_temperature if enabled else 1.0 inputs = self.inputs( text_list=text_list, proms_list=proms_list, resps_list=resps_list, lang_list=lang_list, tone_list=tone_list, len_list=len_list, task_list=task_list, quant_levels=[ 0 for _ in range( max( batch_size, sampling_beam_width ) ) ] ) # to-do: find an elegant way to write this output = super().forward( inputs=inputs, state=state, output_attentions=sampling_entropix, ) logits, state = output.logits, output.state sampled = super().sample( logits=logits, prev_list=None if sampling_repetition_penalty == 1.0 and sampling_length_penalty == 0.0 else [ resps_list[i] if task not in text_task else text_list[i] for i, task in enumerate( task_list ) ], temperature=sampling_temperature, min_temperature=sampling_min_temperature, top_p=sampling_top_p, top_k=sampling_top_k, min_p=sampling_min_p, repetition_penalty=sampling_repetition_penalty, repetition_penalty_decay=sampling_repetition_penalty_decay, length_penalty=sampling_length_penalty, beam_width=sampling_beam_width, mirostat=mirostat, dry_multiplier=sampling_dry_multiplier, dry_base=sampling_dry_base, dry_allowed_length=sampling_dry_allowed_length, attentions=output.attentions if sampling_entropix else None, ) r = sampled[0] if sampled.entropy: entropies.append( sampled.entropy ) if mirostat is not None: mirostat = sampled.scores elif sampling_beam_width > 0: # expand tuple scores = sampled.scores # first step, expand batch if batch_size == 1: batch_size = sampling_beam_width text_list = text_list * sampling_beam_width proms_list = proms_list * sampling_beam_width sequence_list = sequence_list * sampling_beam_width stopped = torch.zeros(batch_size, device=device).bool() scores = [ scores[i] + score for i, score in enumerate(scores) ] # append tokens for i, ri in enumerate(r): task = task_list[i] stop_token = audio_stop_token if task not in text_task else text_stop_token if stop_token in ri: stopped[i] = True sequence_list[i] = torch.cat([sequence_list[i], ri.to(device)]) # stop token found # stopped |= r == stop_token if stopped.all().item(): break if entropies: from ..plot import plot_entropies plot_entropies( entropies ) # pick the best scoring candidate # desu this is always going to be candidate 0 if sampling_beam_width: sequence_list = [ sequence_list[0] ] # remove stop token sequence_list = [self._prune(r, audio_stop_token if task_list[i] not in text_task else text_stop_token) for i, r in enumerate(sequence_list)] # remove sequence_list = [ sequence_list[i][start_slice[i]:] for i, task in enumerate( task_list ) ] return sequence_list def example_usage(): cfg.trainer.backend = "local" cfg.hyperparameters.gradient_accumulation_steps = 1 if cfg.audio_backend == "dac": cfg.sample_rate = 44_100 from functools import partial from einops import repeat from tqdm import tqdm from ..emb.qnt import decode_to_file, unload_model, trim_random, repeat_extend_audio, concat_audio, merge_audio from ..engines import Engine, Engines from ..utils import wrapper as ml from ..utils import setup_logging import numpy as np import re setup_logging() device = "cuda" # mamba seems to ONLY be used as an AR (any NAR attempts lobotomizes it) """ if "mamba" in cfg.model.arch_type: cfg.model.resp_levels = 1 """ # cfg.model.loss_factors = {} def tokenize(content): return torch.tensor( cfg.tokenizer.encode(content) ) def _load_quants(path) -> Tensor: qnt = np.load(path, allow_pickle=True)[()] return torch.from_numpy(qnt["codes"].astype(np.int16))[0, :cfg.model.resp_levels, :].t().to(torch.int16) qnt = _load_quants(f"./data/qnt.{'dac' if cfg.audio_backend == 'dac' else 'enc'}") noise = _load_quants(f"./data/noise.{'dac' if cfg.audio_backend == 'dac' else 'enc'}") text_list = [ tokenize("ˈaɪ wɪl nˌɑːt ˈæsk ɐ sˈɛkənd tˈaɪm").to(device), #tokenize("ˈaɪ wɪl nˌɑːt ˈæsk").to(device), ] proms_list = [ qnt[:cfg.dataset.frames_per_second, :].to(device), #qnt[:cfg.dataset.frames_per_second, :].to(device), ] resps_list = [ qnt[:, :].to(device), #qnt[:cfg.dataset.frames_per_second, :].to(device), ] text_list = text_list[:1] proms_list = proms_list[:1] resps_list = resps_list[:1] batch_size = len(text_list) # rentet-full is the only configuration with BitNet's BitLinear that converges despite the grad_norm saying otherwise kwargs = { 'n_text_tokens': 256, 'n_audio_tokens': 1024, 'd_model': 1024, # 256, # 1024, # 1536 'n_heads': 16, # 4, # 16, # 24 'n_layers': 12, # 32 'n_experts': 1 if not cfg.model else cfg.model.experts, 'p_dropout': 0.1, 'l_padding': 8 if cfg.optimizations.fp8 else 0, 'config': cfg.model } """ try: kwargs['config'] = cfg.model except Exception as e: pass """ bos_id, space_id, eos_id = cfg.tokenizer.encode( " " ) #available_tasks = cfg.dataset.tasks_list available_tasks = ["tts", "stt"] model = AR_NAR(**kwargs).to(device) steps = 150 * len(available_tasks) # * cfg.model.experimental.causal_size optimizer = cfg.hyperparameters.optimizer.lower() if cfg.yaml_path is not None else "prodigy" scheduler = cfg.hyperparameters.scheduler.lower() if cfg.yaml_path is not None else "" learning_rate = cfg.hyperparameters.learning_rate if cfg.yaml_path is not None else None if cfg.optimizations.dadaptation: # do not combine the two if scheduler == "schedulefree": scheduler = "" learning_rate = 1.0 if optimizer == "prodigy": if learning_rate is None: learning_rate = 1.0 optimizer = ml.Prodigy elif optimizer == "adagrad": if learning_rate is None: learning_rate = 1.0e-2 optimizer = ml.Adagrad elif optimizer == "adamw": if learning_rate is None: learning_rate = 1.0e-4 optimizer = ml.AdamW elif optimizer == "sdg": if learning_rate is None: learning_rate = 1.0e-4 optimizer = ml.SGD else: raise ValueError(f"Unrecognized optimizer: {optimizer}") _logger.info(f"Optimizer: {optimizer}\tLearning rate: {learning_rate}") optimizer = optimizer(model.parameters(), lr=learning_rate) if scheduler == "schedulefree": if isinstance(optimizer, ml.AdamW): scheduler = ml.schedulefree.AdamWScheduleFree elif isinstance(optimizer, ml.SGD): scheduler = ml.schedulefree.SGDScheduleFree else: scheduler = None if scheduler is not None: _logger.info(f"Scheduler: {scheduler}") optimizer = scheduler( model.parameters(), lr = learning_rate ) if cfg.optimizations.replace and cfg.optimizations.linear: model = ml.replace_linear( model ) if cfg.optimizations.replace and cfg.optimizations.embedding: model = ml.replace_embedding( model ) """ cfg.optimizations.model_offloading = { "devices": ["cuda:0", "cpu"], # "limits": [ 0.9, -1 ], "assign": [[ f'layers.{i}.' for i in range(0,10) ], [ f'layers.{i}.' for i in range(11,12) ] + [ "model.norm" ]], # "limits": [ 256 * (1024 ** 2), -1 ] } """ engine = Engine(model=model, optimizer=optimizer) engines = Engines({"ar+nar": engine}) engines.setup() """ if cfg.optimizations.model_offloading: model = ml.offload_model( model, policy=cfg.optimizations.model_offloading ) """ """ torch.save( { 'module': model.state_dict() }, f"./data/{cfg.model.arch_type}.pth" ) """ _logger.info(f"AR+NAR ({cfg.model.arch_type}, {cfg.audio_backend}) parameter count: {sum(p.numel() for p in model.parameters() if p.requires_grad)}") @torch.no_grad() def sample_data(t=None): if isinstance(t, list): tasks = t texts = [ text_list[0].to(device) if task != "stt" else None for i, task in enumerate( tasks ) ] proms = [ proms_list[0].to(device) if task != "stt" else [ "stt" ] for i, task in enumerate( tasks ) ] resps = [ None if task != "stt" else resps_list[0].to(device) for i, task in enumerate( tasks ) ] return texts, proms, resps, tasks texts = [] proms = [] resps = [] tasks = [] for i in range(batch_size): task = random.choice(available_tasks) if t is None else t text = text_list[i].to(device) prom = proms_list[i].to(device) resp = resps_list[i].to(device) # do nothing if task == "tts": ... elif task == "stt": prom = [ task ] # to-do: reimplement this from data.py """ elif task == "tts-c": trim_length = int(random.uniform(cfg.dataset.prompt_duration_range[0], cfg.dataset.prompt_duration_range[1]) * cfg.dataset.frames_per_second) prom = resp[:trim_length] resp = resp[trim_length:] prom = prom.to(device) elif task == "ns" or task == "sr": # extend the noise to fill the target audio noise_ext = repeat_extend_audio( noise, resp.shape[0] ) # create the input prompt by merging the target audio with the noise prom = merge_audio( resp.cpu(), noise_ext, scale=[1, cfg.dataset.noise_scale], device=cfg.dataset.reencode_device ) prom = prom.to(device) # set the target to just be the noise if if task == "sr": resp = noise_ext # set the text prompt to empty to train without a guided text prompt if random.random() < 0.5: text = torch.tensor([bos_id, eos_id], device=device, dtype=torch.uint8) prom = [ task, prom, ] """ texts.append( text ) proms.append( prom ) resps.append( resp ) tasks.append( task ) return texts, proms, resps, tasks @torch.inference_mode() def sample( name, steps=500, task=None ): engine.eval() texts, proms, resps, tasks = sample_data( task ) if "ar" in cfg.model.capabilities: output = engine( texts, proms, resps, task_list=tasks, max_steps=steps, sampling_temperature=0.95 ) text = [ cfg.tokenizer.decode( output[i] ) for i, task in enumerate( tasks ) if task == "stt" ] texts = [ texts[i] for i, task in enumerate( tasks ) if task != "stt" ] proms = [ proms[i] for i, task in enumerate( tasks ) if task != "stt" ] resps = [ output[i] for i, task in enumerate( tasks ) if task != "stt" ] tasks = [ tasks[i] for i, task in enumerate( tasks ) if task != "stt" ] print( "STT:", text ) else: resps = [ resp[:, 0] for resp in resps ] if "nar" in cfg.model.capabilities: resps = engine( texts, proms, resps, task_list=tasks, sampling_temperature=0.2 ) for i, o in enumerate(resps): _ = decode_to_file(o.to(dtype=torch.int32), f"data/{cfg.model.arch_type}.{cfg.audio_backend}.{i}.{task}.{name}.wav", device=device) unload_model() def train(): engine.train() t = trange(steps) for i in t: texts, proms, resps, tasks = sample_data() stats = {"step": i} stats |= engine.traverse(text_list=texts, proms_list=proms, resps_list=resps, task_list=tasks) stats |= {"grad_norm": engine.get_global_grad_norm()} tqdm.write(f"{stats}") """ torch.save( { 'module': model.state_dict() }, f"./data/{cfg.model.arch_type}.pth" ) """ #sample("init", 5) train() """ if cfg.optimizations.compile: model = ml.compile_model(model, backend=cfg.optimizations.compile) """ """ for task in available_tasks: sample("final", task=task) """ sample("final", task=available_tasks) engines.quit() if __name__ == "__main__": example_usage()