""" A (mostly) NAR model that handles inferencing all RVQ levels in parallel (NAR). I believe Meta's Voicebox does this too (predict the utterance length, then decode in parallel) It *does* have to inference the initial length in an autoregresssive-ish manner (it can technically also be done in parallel) Initial experiments show this only really "works" for the a few brief seconds before going to silence. I imagine I need to read more papers or just need to train longer. """ from .base import Base, list_to_tensor, Categorical from ..config import cfg import torch from torch.nn.utils.rnn import pad_sequence import random import math from einops import rearrange from torch import Tensor from tqdm import trange from ..emb.qnt import trim import logging _logger = logging.getLogger(__name__) class NAR(Base): def forward( self, text_list: list[Tensor], proms_list: list[Tensor], resps_list: list[Tensor] | None = None, task_list: list[Tensor] | None = None, lang_list: list[Tensor] | None = None, tone_list: list[Tensor] | None = None, len_list: list[Tensor] | None = None, training: bool | None = None, max_steps: int = 1000, max_levels: int = 0, max_resp_context: int = -1, sampling_temperature: float = 1.0, sampling_min_temperature: float = -1.0, sampling_top_k: int = -100, sampling_top_p: float = 1.0, sampling_min_p: float = 0.0, sampling_repetition_penalty: float = 1.0, sampling_repetition_penalty_decay: float = 0.0, sampling_length_penalty: float = 0.0, sampling_beam_width: int = 0, sampling_mirostat_tau: float = 0.0, sampling_mirostat_eta: float = 0.1, disable_tqdm=False, ): device = text_list[0].device batch_size = len(text_list) # is training if resps_list is not None: p_len_task = self.config.experimental.p_len_train if self.config is not None else 0.05 n_levels_set = {r.shape[-1] for r in resps_list} n_levels = next(iter(n_levels_set)) # assert n_levels == self.n_resp_levels # to-do: make this YAML configurable def sample_task(): return "len" if random.random() < p_len_task else "tts" # generate task list to train against task_list = [ sample_task() for _ in range(batch_size) ] # specifies how to sample probabilities of which RVQ levels to train against rvq_levels_p = self.config.experimental.rvq_levels_p if self.config is not None else "equal" # determines which RVQ level to target per batch quant_level_range = self.config.experimental.rvq_level_range if self.config is not None and self.config.experimental.rvq_level_range else [ 0 if self.causal else 1, self.n_resp_levels - 1 ] # rate to perform token dropout errors token_dropout_error = self.config.experimental.token_dropout_error # RVQ levels to apply token dropout on token_dropout_rvq_levels = self.config.experimental.token_dropout_rvq_levels # implicitly set it to all levels if not token_dropout_rvq_levels: token_dropout_rvq_levels = [0, self.resp_levels - 1] # allow passing a specific distribution of RVQ levels rvq_levels_p = rvq_levels_p if isinstance(rvq_levels_p, list) else [] if not rvq_levels_p: lo, hi = quant_level_range[0], quant_level_range[1] + 1 # randomly select a target RVQ-bin level (0 being AR, 1+ being NAR) if rvq_levels_p == "equal": rvq_levels_p = [ i for i in range( lo, hi ) ] else: # yuck rvq_levels_p = sum([[i for _ in range(hi - i)] for i in range( lo, hi ) ], []) # input RVQ levels quant_levels = [ random.choice( rvq_levels_p ) for i in range(batch_size) ] # trim resps to only contain all levels below the target level resps_list = [r[..., :l+1] for r, l in zip(resps_list, quant_levels)] # I hate python's value/reference semantics so much for i, quant_level, resps, proms in zip(range(batch_size), quant_levels, resps_list, proms_list): # cap quant_level if it exceeds its corresponding resp/prom if quant_level >= resps.shape[-1]: quant_levels[i] = resps.shape[-1] - 1 # proms could be a Tensor, list[Tensor], or None if isinstance( proms, torch.Tensor ): if quant_level >= proms.shape[-1]: quant_levels[i] = proms.shape[-1] - 1 elif isinstance( proms, list ): for j, prom in enumerate( proms ): if not isinstance( prom, torch.Tensor ): continue if quant_level >= prom.shape[-1]: quant_levels[i] = prom.shape[-1] - 1 # apply token dropout error compensation if token_dropout_error > 0 and (token_dropout_rvq_levels[0] <= quant_level and quant_level <= token_dropout_rvq_levels[1]): steps = resps.shape[0] for l in range( quant_level ): for t in range( steps ): token = resps[t, l].item() if random.random() < token_dropout_error: offset = 1 * ( 1 if random.random() < 0.5 else -1 ) resps_list[i][t, l] = clamp(token + offset, 1, 1022) # +- 1 inputs = self.inputs( text_list=text_list, proms_list=proms_list, resps_list=resps_list, lang_list=lang_list, tone_list=tone_list, task_list=task_list, quant_levels=quant_levels, ) return super().forward( inputs=inputs, quant_levels=quant_levels, ) # NAR if len_list is not None: # is NAR if max_levels == 0: max_levels = self.n_resp_levels # fill with mock tokens prev_list = [ torch.tensor([ self.stop_token for _ in range(resp_len) ], device=device, dtype=torch.int16) for resp_len in len_list ] start = True for n in trange( max_levels, desc="NAR", disable=disable_tqdm ): level = 0 if n == 0 else prev_list[0].shape[-1] if level >= max_levels + 1: # min(max_levels + 1, self.n_resp_levels): # commented out to experiment with exceeding trained levels break quant_levels = [ level for _ in range(batch_size) ] # torch.full((len(text_list),), level) inputs = self.inputs( text_list=text_list, proms_list=proms_list, resps_list=prev_list, lang_list=lang_list, tone_list=tone_list, quant_levels=quant_levels, ) output = super().forward( inputs=inputs, quant_levels=quant_levels, ) logits = output.logits """ resps_list = [ logit[-l:].argmax(dim=1) for logit, l in zip(logits, len_list) ] """ sampled = super().sample( logits=logits, prev_list=prev_list, quant_levels=quant_levels, temperature=1.0 if n == 0 else sampling_temperature, min_temperature=sampling_min_temperature, top_p=sampling_top_p, top_k=sampling_top_k, min_p=sampling_min_p, repetition_penalty=sampling_repetition_penalty, repetition_penalty_decay=sampling_repetition_penalty_decay, #length_penalty=sampling_length_penalty, #beam_width=sampling_beam_width, #mirostat=mirostat, ) resps_list = sampled[0] if n == 0: prev_list = [ r.unsqueeze(-1).to(device) for r in resps_list ] else: prev_list = [ torch.cat([rs, r.unsqueeze(-1).to(device)], dim=-1) for rs, r in zip(prev_list, resps_list) ] return prev_list # is AR sequence_list = [ torch.tensor([0], device=device,dtype=torch.int16) for _ in range(batch_size) ] stopped = torch.zeros(batch_size, device=device).bool() stop_token = 10 task_list = [ "len" for _ in range(batch_size) ] for n in trange(10, desc="AR", disable=disable_tqdm): len_list = sequence_list inputs = self.inputs( text_list=text_list, proms_list=proms_list, resps_list=resps_list, lang_list=lang_list, tone_list=tone_list, len_list=len_list, task_list=task_list, quant_levels=[ 0 for _ in range( max( batch_size, sampling_beam_width ) ) ] ) output = super().forward( inputs=inputs, ) logits = output.logits r = [ logit[-1:].argmax(dim=1) for logit in logits ] # sanitize for i, token in enumerate(r): if token > 10: r[i][0] = stop_token # append tokens for i, ri in enumerate(r): if stop_token in ri: stopped[i] = True sequence_list[i] = torch.cat([sequence_list[i], ri.to(device)]) # stop token found stopped |= r == stop_token if stopped.all().item(): break # convert tokens into int return [ int("".join([ str(token.item()) for token in r if token != stop_token ])) for r in sequence_list ] def example_usage(): cfg.trainer.backend = "local" cfg.hyperparameters.gradient_accumulation_steps = 1 if cfg.audio_backend == "dac": cfg.sample_rate = 44_100 from functools import partial from einops import repeat from tqdm import tqdm from ..emb.qnt import decode_to_file, unload_model from ..engines import Engine from ..utils import wrapper as ml import numpy as np import re device = "cuda" # mamba seems to ONLY be used as an AR (any NAR attempts lobotomizes it) """ if "mamba" in cfg.model.arch_type: cfg.model.resp_levels = 1 """ # cfg.model.loss_factors = {} def tokenize(content): return torch.tensor( cfg.tokenizer.encode(content) ) def _load_quants(path) -> Tensor: qnt = np.load(path, allow_pickle=True)[()] return torch.from_numpy(qnt["codes"].astype(np.int16))[0, :cfg.model.resp_levels, :].t().to(torch.int16) qnt = _load_quants(f"./data/qnt.{'dac' if cfg.audio_backend == 'dac' else 'enc'}") text_list = [ tokenize("ˈaɪ wɪl nˌɑːt ˈæsk ɐ sˈɛkənd tˈaɪm").to(device), #tokenize("ˈaɪ wɪl nˌɑːt ˈæsk").to(device), ] proms_list = [ qnt[:cfg.dataset.frames_per_second, :].to(device), #qnt[:cfg.dataset.frames_per_second, :].to(device), ] resps_list = [ qnt[:, :].to(device), #qnt[:cfg.dataset.frames_per_second, :].to(device), ] text_list = text_list[:1] proms_list = proms_list[:1] resps_list = resps_list[:1] # rentet-full is the only configuration with BitNet's BitLinear that converges despite the grad_norm saying otherwise kwargs = { 'n_text_tokens': 256, 'n_audio_tokens': 1024, 'd_model': 1024, # 256, # 1024, # 1536 'n_heads': 16, # 4, # 16, # 24 'n_layers': 12, # 32 'n_experts': 1, 'p_dropout': 0.1, 'l_padding': 8 if cfg.optimizations.fp8 else 0, 'config': cfg.model } """ try: kwargs['config'] = cfg.model except Exception as e: pass """ model = NAR(**kwargs).to(device) steps = 250 optimizer = cfg.hyperparameters.optimizer.lower() if cfg.yaml_path is not None else "prodigy" scheduler = cfg.hyperparameters.scheduler.lower() if cfg.yaml_path is not None else "" learning_rate = cfg.hyperparameters.learning_rate if cfg.yaml_path is not None else None if cfg.optimizations.dadaptation: # do not combine the two if scheduler == "schedulefree": scheduler = "" learning_rate = 1.0 if optimizer == "prodigy": if learning_rate is None: learning_rate = 1.0 optimizer = ml.Prodigy elif optimizer == "adagrad": if learning_rate is None: learning_rate = 1.0e-2 optimizer = ml.Adagrad elif optimizer == "adamw": if learning_rate is None: learning_rate = 1.0e-4 optimizer = ml.AdamW elif optimizer == "sdg": if learning_rate is None: learning_rate = 1.0e-4 optimizer = ml.SGD else: raise ValueError(f"Unrecognized optimizer: {optimizer}") _logger.info(f"Optimizer: {optimizer}\tLearning rate: {learning_rate}") optimizer = optimizer(model.parameters(), lr=learning_rate) if scheduler == "schedulefree": if isinstance(optimizer, ml.AdamW): scheduler = ml.schedulefree.AdamWScheduleFree elif isinstance(optimizer, ml.SGD): scheduler = ml.schedulefree.SGDScheduleFree else: scheduler = None if scheduler is not None: _logger.info(f"Scheduler: {scheduler}") optimizer = scheduler( model.parameters(), lr = learning_rate ) if cfg.optimizations.replace and cfg.optimizations.linear: model = ml.replace_linear( model ) if cfg.optimizations.replace and cfg.optimizations.embedding: model = ml.replace_embedding( model ) engine = Engine(model=model, optimizer=optimizer) """ torch.save( { 'module': model.state_dict() }, f"./data/{cfg.model.arch_type}.pth" ) """ _logger.info(f"NAR parameter count: {sum(p.numel() for p in model.parameters() if p.requires_grad)}") @torch.inference_mode() def sample( name, steps=1000 ): if cfg.audio_backend == "dac" and name == "init": return engine.eval() len_list = engine(text_list, proms_list, max_steps=steps, sampling_temperature=0.95 ) resps_list = engine( text_list, proms_list, len_list=len_list, sampling_temperature=0.2 ) for i, o in enumerate(resps_list): _ = decode_to_file(o.to(dtype=torch.int32), f"data/{cfg.model.arch_type}.{cfg.audio_backend}.{i}.{name}.wav", device=device) unload_model() def train(): engine.train() t = trange(steps) for i in t: stats = {"step": i} stats |= engine.traverse(text_list=text_list, proms_list=proms_list, resps_list=resps_list) stats |= {"grad_norm": engine.get_global_grad_norm()} tqdm.write(f"{stats}") """ torch.save( { 'module': model.state_dict() }, f"./data/{cfg.model.arch_type}.pth" ) """ #sample("init", 5) train() sample("final") if __name__ == "__main__": example_usage()