#pragma once #include "llama-vocab.h" #include /* Begin cringe so I can access the model's tok_embd */ // it needs to be copied so the struct layout is exactly as it is under llama.cpp #define LLAMA_MAX_LAYERS 512 #define LLAMA_MAX_EXPERTS 160 // DeepSeekV2 enum e_model { MODEL_UNKNOWN, }; enum llm_arch { LLM_ARCH_UNKNOWN, }; struct llama_hparams_posnet { uint32_t n_embd; uint32_t n_layer; }; struct llama_hparams_convnext { uint32_t n_embd; uint32_t n_layer; }; struct llama_hparams { bool vocab_only; bool rope_finetuned; bool use_par_res; bool swin_norm; uint32_t n_vocab = 0; uint32_t n_ctx_train; // context size the model was trained on uint32_t n_embd; uint32_t n_embd_features = 0; uint32_t n_layer; uint32_t n_rot; uint32_t n_swa = 0; // sliding window attention (SWA) uint32_t n_embd_head_k; // dimension of keys (d_k). d_q is assumed to be the same, but there are n_head q heads, and only n_head_kv k-v heads uint32_t n_embd_head_v; // dimension of values (d_v) aka n_embd_head uint32_t n_expert = 0; uint32_t n_expert_used = 0; uint32_t n_vocab_type = 0; // for BERT-style token types uint32_t n_rel_attn_bkts = 0; // for WavTokenizer struct llama_hparams_posnet posnet; struct llama_hparams_convnext convnext; std::array n_head_arr; std::array n_head_kv_arr; std::array n_ff_arr; uint32_t n_layer_dense_lead = 0; uint32_t n_lora_q = 0; uint32_t n_lora_kv = 0; uint32_t n_ff_exp = 0; uint32_t n_ff_shexp = 0; uint32_t n_expert_shared = 0; float expert_weights_scale = 0.0; float f_norm_eps; float f_norm_rms_eps; float f_norm_group_eps; uint32_t n_norm_groups; float f_attn_logit_softcapping = 50.0f; float f_final_logit_softcapping = 30.0f; // for RWKV uint32_t rescale_every_n_layers = 0; uint32_t time_mix_extra_dim = 0; uint32_t time_decay_extra_dim = 0; uint32_t wkv_head_size = 0; float rope_attn_factor = 1.0f; float rope_freq_base_train; float rope_freq_scale_train; uint32_t n_ctx_orig_yarn; float rope_yarn_log_mul; int rope_sections[4]; // for State Space Models uint32_t ssm_d_conv = 0; uint32_t ssm_d_inner = 0; uint32_t ssm_d_state = 0; uint32_t ssm_dt_rank = 0; bool ssm_dt_b_c_rms = false; float f_clamp_kqv = 0.0f; float f_max_alibi_bias = 0.0f; float f_logit_scale = 0.0f; // Additional scale factors (Granite/Granite MoE) float f_residual_scale = 0.0f; float f_embedding_scale = 0.0f; float f_attention_scale = 0.0f; bool causal_attn = true; bool use_alibi = false; bool attn_soft_cap = false; // needed by encoder-decoder models (e.g. T5, FLAN-T5) // ref: https://github.com/ggerganov/llama.cpp/pull/8141 llama_token dec_start_token_id = LLAMA_TOKEN_NULL; enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_NONE; enum llama_rope_type rope_type = LLAMA_ROPE_TYPE_NONE; enum llama_rope_scaling_type rope_scaling_type_train = LLAMA_ROPE_SCALING_TYPE_NONE; }; struct llama_model { e_model type = MODEL_UNKNOWN; llm_arch arch = LLM_ARCH_UNKNOWN; llama_ftype ftype = LLAMA_FTYPE_ALL_F32; std::string name = "n/a"; llama_hparams hparams = {}; llama_vocab vocab; struct ggml_tensor * tok_embd = nullptr; struct ggml_tensor * type_embd = nullptr; struct ggml_tensor * pos_embd = nullptr; struct ggml_tensor * tok_norm = nullptr; struct ggml_tensor * tok_norm_b = nullptr; struct ggml_tensor * output_norm = nullptr; struct ggml_tensor * output_norm_b = nullptr; struct ggml_tensor * output = nullptr; struct ggml_tensor * output_b = nullptr; struct ggml_tensor * output_norm_enc = nullptr; // classifier struct ggml_tensor * cls = nullptr; struct ggml_tensor * cls_b = nullptr; struct ggml_tensor * cls_out = nullptr; struct ggml_tensor * cls_out_b = nullptr; struct ggml_tensor * conv1d = nullptr; struct ggml_tensor * conv1d_b = nullptr; }; /* BEGIN VALL-E SPECIFIC HELPERS */ struct ggml_tensor * llama_get_embedding_weights(struct llama_model * model) { return model->tok_embd; } struct ggml_tensor * llama_get_output_head_tensor(struct llama_model * model ) { return model->output; } void llama_set_output_head(struct llama_model * model, struct ggml_tensor* tensor ) { // set the output tensor model->output = tensor; // required to properly output logits *const_cast(&model->hparams.n_vocab) = tensor->ne[1]; } /* END VALL-E SPECIFIC HELPERS */ /* End cringe code */