"""
A helper script to generate a demo page.
Layout as expected:
./data/demo/:
{speaker ID}:
out:
ours.wav (generated)
ms_valle.wav
yourtts.wav
prompt.txt (text to generate)
prompt.wav (reference clip to serve as the prompt)
reference.wav (ground truth utterance)
Will also generate samples from a provided datset, if requested.
"""
import argparse
import base64
import random
import logging
import time
import torch
_logger = logging.getLogger(__name__)
from pathlib import Path
from .inference import TTS
from .config import cfg
from .data import create_train_dataloader, create_val_dataloader, get_random_prompt
from .emb.qnt import decode_to_file
from .metrics import wer, sim_o
from .utils import setup_logging
from .utils.io import json_read, json_write
from tqdm import tqdm, trange
def mean( l ):
return sum(l) / len(l)
def encode(path):
if path is None or not path.exists():
return ""
return "data:audio/wav;base64," + base64.b64encode(open(path, "rb").read()).decode('utf-8')
def safe_inference( tts, out_path, **kwargs ):
if args.skip_existing and out_path.exists():
return
try:
tts.inference( out_path=out_path, **kwargs )
except Exception as e:
raise e
print(f'Error while processing {out_path}: {e}')
def safe_batched_inference( tts, **kwargs ):
try:
tts.batched_inference( **kwargs )
except Exception as e:
raise e
print(f'Error while processing batch: {e}')
def process_batch( tts, inputs, kwargs={} ):
kwargs = kwargs | dict(
texts=[ x[0] for x in inputs ],
references=[ x[1] for x in inputs ],
languages=[ x[2] for x in inputs ],
out_paths=[ x[3] for x in inputs ],
)
safe_batched_inference( tts, **kwargs )
# Would be downright sugoi if I could incorporate this with into __main__
def main():
parser = argparse.ArgumentParser("VALL-E TTS Demo")
parser.add_argument("--yaml", type=Path, default=None)
parser.add_argument("--model", type=Path, default=None)
parser.add_argument("--batch-size", type=int, default=cfg.inference.batch_size)
parser.add_argument("--demo-dir", type=Path, default=None)
parser.add_argument("--skip-existing", action="store_true")
parser.add_argument("--dataset-dir-name", type=str, default="")
parser.add_argument("--dataset-dir-name-prefix", type=str, default=None)
parser.add_argument("--sample-from-dataset", action="store_true")
parser.add_argument("--skip-loading-dataloader", action="store_true")
parser.add_argument("--dataset-samples", type=int, default=0)
parser.add_argument("--audio-path-root", type=str, default=None)
parser.add_argument("--preamble", type=str, default=None)
parser.add_argument("--output-filename", type=str, default="index.html")
parser.add_argument("--language", type=str, default="auto")
parser.add_argument("--task", type=str, default="tts")
parser.add_argument("--modality", type=str, default="auto")
parser.add_argument("--out-path", type=Path, default=None)
parser.add_argument("--max-duration", type=int, default=12 * cfg.dataset.frames_per_second)
parser.add_argument("--max-steps", type=int, default=30)
parser.add_argument("--max-levels", type=int, default=7)
parser.add_argument("--ar-temperature", type=float, default=1.0)
parser.add_argument("--nar-temperature", type=float, default=0.0)
parser.add_argument("--min-ar-temperature", type=float, default=-1.0)
parser.add_argument("--min-nar-temperature", type=float, default=-1.0)
parser.add_argument("--input-prompt-length", type=float, default=5.0)
parser.add_argument("--input-prompt-prefix", action="store_true")
parser.add_argument("--prefix-silence", type=float, default=0.0)
parser.add_argument("--cfg-strength", type=float, default=1.0)
parser.add_argument("--cfg-rescale", type=float, default=0.75)
parser.add_argument("--top-p", type=float, default=1.0)
parser.add_argument("--top-k", type=int, default=0)
parser.add_argument("--top-no", type=float, default=0.0)
parser.add_argument("--min-p", type=float, default=0.0)
parser.add_argument("--repetition-penalty", type=float, default=1.0)
parser.add_argument("--repetition-penalty-decay", type=float, default=0.0)
parser.add_argument("--length-penalty", type=float, default=0.0)
parser.add_argument("--beam-width", type=int, default=0)
parser.add_argument("--mirostat-tau", type=float, default=0)
parser.add_argument("--mirostat-eta", type=float, default=0)
parser.add_argument("--dry-multiplier", type=float, default=0)
parser.add_argument("--dry-base", type=float, default=1.75)
parser.add_argument("--dry-allowed-length", type=int, default=2)
parser.add_argument("--seed", type=int, default=None)
parser.add_argument("--device", type=str, default=None)
parser.add_argument("--amp", action="store_true")
parser.add_argument("--dtype", type=str, default=None)
parser.add_argument("--attention", type=str, default="auto")
parser.add_argument("--random-prompts", action="store_true")
parser.add_argument("--lora", action="store_true")
parser.add_argument("--comparison", type=str, default=None)
parser.add_argument("--transcription-model", type=str, default="openai/whisper-large-v3")
parser.add_argument("--speaker-similarity-model", type=str, default="microsoft/wavlm-large")
args = parser.parse_args()
config = None
if args.yaml:
config = args.yaml
elif args.model:
config = args.model
tts = TTS( config=config, lora=args.lora, device=args.device, dtype=args.dtype, amp=args.amp, attention=args.attention )
if not args.demo_dir:
args.demo_dir = Path("./data/demo/")
if not args.preamble:
args.preamble = "\n".join([
"Past model demo pages: [ar+nar-len-llama-8 (ar+nar)] [ar+nar-len-llama-8 (nar-len)] [ar+nar-llama-8 (ar+nar)] | Old demo pages: [1] [2] [3] [4] [5]",
"
",
"
",
"Below are some samples from my VALL-E implementation: https://git.ecker.tech/mrq/vall-e/.",
"
",
"Objective metrics are computed by:",
"
--ar-temperature={args.ar_temperature} --nar-temperature={args.nar_temperature} --cfg-strength={args.cfg_strength} --max-steps={args.max_steps} --top-k={args.top_k} --dtype={args.dtype}", ]) # comparison kwargs comparison_kwargs = { "titles": [], "suffix": "diff", "enabled": {}, "disabled": {} } if args.lora: args.comparison = "lora" # to-do: just make this mappable if args.comparison == "lora": comparison_kwargs["suffix"] = "no_lora" comparison_kwargs["titles"] = ["LoRA", "No LoRA"] comparison_kwargs["disabled"]["use_lora"] = True comparison_kwargs["disabled"]["ar_temperature"] = 0.0 comparison_kwargs["enabled"]["use_lora"] = False comparison_kwargs["enabled"]["ar_temperature"] = 0.95 elif args.comparison == "ar-temp": current_temperature = args.ar_temperature other_temperature = 1.0 comparison_kwargs["suffix"] = "temperature" comparison_kwargs["titles"] = [f"Temp: {current_temperature:.2f}", f"Temp: {other_temperature:.2f}"] comparison_kwargs["disabled"]["ar_temperature"] = current_temperature comparison_kwargs["enabled"]["ar_temperature"] = other_temperature elif args.comparison == "input-prompt-length": current_length = args.input_prompt_length other_length = 3.0 comparison_kwargs["suffix"] = "input_prompt_length" comparison_kwargs["titles"] = [f"Prompt Length: {current_length:.2f}s", f"Prompt Length: {other_length:.2f}s"] comparison_kwargs["disabled"]["input_prompt_length"] = current_length comparison_kwargs["enabled"]["input_prompt_length"] = other_length elif args.comparison == "dtype": current_dtype = cfg.inference.weight_dtype other_dtype = "float32" if current_dtype == "float16": other_dtype = "bfloat16" elif current_dtype == "bfloat16": other_dtype = "float16" comparison_kwargs["suffix"] = f"dtype_{other_dtype}" comparison_kwargs["titles"] = [f"With {current_dtype}", f"With {other_dtype}"] comparison_kwargs["disabled"]["dtype"] = current_dtype comparison_kwargs["enabled"]["dtype"] = other_dtype elif args.comparison == "amp": current_amp = cfg.inference.weight_amp other_amp = not current_amp comparison_kwargs["suffix"] = f"with{'out' if not other_amp else ''}_amp" comparison_kwargs["titles"] = [f"With {current_amp}", f"With {other_amp}"] comparison_kwargs["disabled"]["amp"] = current_amp comparison_kwargs["enabled"]["amp"] = other_amp elif args.comparison == "modality": comparison_kwargs["suffix"] = "modality" comparison_kwargs["titles"] = [f"AR+NAR", f"NAR-len"] comparison_kwargs["disabled"]["modality"] = "ar+nar" comparison_kwargs["disabled"]["cfg_strength"] = 0.0 comparison_kwargs["enabled"]["modality"] = "nar-len" comparison_kwargs["enabled"]["cfg_strength"] = 3.0 elif args.comparison == "cfg-strength": current_cfg_strength = 3.0 other_cfg_strength = 0.0 comparison_kwargs["suffix"] = f"no_cfg_strength" comparison_kwargs["titles"] = [f"CFG {current_cfg_strength}", f"CFG {other_cfg_strength}"] comparison_kwargs["disabled"]["cfg_strength"] = current_cfg_strength comparison_kwargs["enabled"]["cfg_strength"] = other_cfg_strength elif args.comparison: raise Exception(f"Unrecognized comparison flag: {args.comparison}") setup_logging() # read html template html = open(args.demo_dir / "index.template.html", "r", encoding="utf-8").read() sampling_kwargs = dict( task=args.task, modality=args.modality, max_steps=args.max_steps, max_levels=args.max_levels, max_duration=args.max_duration, ar_temperature=args.ar_temperature, nar_temperature=args.nar_temperature, min_ar_temperature=args.min_ar_temperature, min_nar_temperature=args.min_nar_temperature, top_p=args.top_p, top_k=args.top_k, top_no=args.top_no,min_p=args.min_p, repetition_penalty=args.repetition_penalty, repetition_penalty_decay=args.repetition_penalty_decay, length_penalty=args.length_penalty, beam_width=args.beam_width, mirostat_tau=args.mirostat_tau, mirostat_eta=args.mirostat_eta, dry_multiplier=args.dry_multiplier, dry_base=args.dry_base, dry_allowed_length=args.dry_allowed_length, input_prompt_length=args.input_prompt_length, input_prompt_prefix=args.input_prompt_prefix, prefix_silence=args.prefix_silence, cfg_strength=args.cfg_strength, cfg_rescale=args.cfg_rescale, seed = args.seed if args.seed else int(time.time()), tqdm = True, batch_size = args.batch_size, ) # replace values in our template html = html.replace(r"${PREAMBLE}", args.preamble ) html = html.replace(r"${SETTINGS}", str(sampling_kwargs)) # pull from provided samples samples_dirs = {} # only add the existing librispeech validation dataset if i'm doing validation so I can stop commenting this out if not args.dataset_dir_name: samples_dirs["librispeech"] = args.demo_dir / "datasets" / "librispeech" else: if "validation" in args.dataset_dir_name: samples_dirs["librispeech"] = args.demo_dir / "datasets" / "librispeech" # automatically pull from anything under the dataset dir if args.dataset_dir_name.endswith("/*"): args.dataset_dir_name = args.dataset_dir_name[:-2] datasets = [ dir for dir in (args.demo_dir / args.dataset_dir_name).iterdir() if dir.is_dir() ] for path in datasets: samples_dirs[path.name] = path # user provided dataset elif (args.demo_dir / args.dataset_dir_name).exists(): samples_dirs["dataset"] = args.demo_dir / args.dataset_dir_name # pull from dataset samples if args.sample_from_dataset: cfg.dataset.sample_type = "path" if len(cfg.dataset.training) < cfg.evaluation.batch_size else "speaker" cfg.dataset.sample_order = "random" cfg.dataset.tasks_list = [ 'tts' ] samples_dirs["dataset"] = args.demo_dir / args.dataset_dir_name _logger.info("Loading dataloader...") dataloader = create_train_dataloader() _logger.info("Loaded dataloader.") length = min(len( dataloader.dataset ), cfg.evaluation.batch_size) num = args.dataset_samples if args.dataset_samples else length for i in trange( num, desc="Sampling dataset for samples" ): index = i if not cfg.dataset.sample_shuffle else random.randint( 0, len( dataloader.dataset ) - 1 ) batch = dataloader.dataset[index] if args.dataset_dir_name_prefix: dir = args.demo_dir / args.dataset_dir_name / f'{args.dataset_dir_name_prefix}_{i}' else: dir = args.demo_dir / args.dataset_dir_name / f'{i}' (dir / "out").mkdir(parents=True, exist_ok=True) metadata = batch["metadata"] text = get_random_prompt() if args.random_prompts else metadata["text"] #text = get_random_prompt() if i >= (num // 2) else metadata["text"] language = metadata["language"].lower() prompt = dir / "prompt.wav" reference = dir / "reference.wav" out_path = dir / "out" / "ours.wav" if args.skip_existing and out_path.exists(): continue open( dir / "prompt.txt", "w", encoding="utf-8" ).write( text ) open( dir / "language.txt", "w", encoding="utf-8" ).write( language ) decode_to_file( batch["proms"].to("cuda"), prompt, device="cuda" ) decode_to_file( batch["resps"].to("cuda"), reference, device="cuda" ) inputs = [] outputs = [] metrics_inputs = [] comparison_inputs = [] for dataset_name, sample_dir in samples_dirs.items(): if not sample_dir.exists(): continue samples = [] speakers = [ dir for dir in sample_dir.iterdir() if dir.is_dir() ] speakers.sort() sources = [ "ms_valle", "f5" ] if dataset_name == "librispeech" else [] # generate demo output for dir in tqdm(speakers, desc=f"Preparing demo for {dataset_name}"): # bail if too many samples if args.dataset_samples and len(samples) >= args.dataset_samples: break text = open(dir / "prompt.txt", encoding="utf-8").read() language = open(dir / "language.txt").read() if (dir / "language.txt").exists() else "en" prompt = dir / "prompt.wav" reference = dir / "reference.wav" metrics_path = dir / "metrics.json" out_path = dir / "out" / "ours.wav" out_path_comparison = dir / "out" / f"ours_{comparison_kwargs['suffix']}.wav" external_sources = [ dir / "out" / f"{source}.wav" for source in sources ] audio_samples = [ prompt, out_path ] if args.comparison: audio_samples += [ out_path_comparison ] audio_samples += [ p if p.exists() else None for p in external_sources ] """ # manual invocation cmd = f'python3 -m vall_e --yaml="{args.yaml}" "{reference}" "{text}" --out-path={out_path}' # F5 cmd = f'python inference-cli.py --model "F5-TTS" --ref_audio "{reference}" --gen_text "{text}" --output_dir "{out_path.parent}"' """ if not args.random_prompts or dataset_name == "librispeech": audio_samples += [ reference ] samples.append(( text, audio_samples, )) # segregate comparisons into its own batch because they use different kwargs (and I do not support variadic-batched kwargs) if args.comparison: should_generate = (args.skip_existing and not out_path_comparison.exists()) or not (args.skip_existing) if should_generate: comparison_inputs.append((text, prompt, language, out_path_comparison)) metrics_inputs.append((dataset_name, text, language, out_path_comparison, prompt, reference, metrics_path)) should_generate = (args.skip_existing and not out_path.exists()) or not (args.skip_existing) if should_generate: inputs.append((text, prompt, language, out_path)) metrics_inputs.append((dataset_name, text, language, out_path, prompt, reference, metrics_path)) outputs.append((dataset_name, samples)) if inputs: process_batch( tts, inputs, sampling_kwargs | (comparison_kwargs["disabled"] if args.comparison else {}) ) if comparison_inputs: process_batch( tts, comparison_inputs, sampling_kwargs | (comparison_kwargs["enabled"] if args.comparison else {}) ) metrics_map = {} for dataset_name, text, language, out_path, prompt_path, reference_path, metrics_path in tqdm(metrics_inputs, desc="Calculating metrics"): calculate = not metrics_path.exists() or (metrics_path.stat().st_mtime < out_path.stat().st_mtime) if calculate: # computes based on word transcriptions outright wer_score, cer_score = wer( out_path, text, language=language, device=tts.device, dtype=tts.dtype, model_name=args.transcription_model, phonemize=False ) # compute on words as well, but does not normalize wer_un_score, cer_un_score = wer( out_path, text, language=language, device=tts.device, dtype=tts.dtype, model_name=args.transcription_model, phonemize=False, normalize=False ) # computes on phonemes instead pwer_score, per_score = wer( out_path, text, language=language, device=tts.device, dtype=tts.dtype, model_name=args.transcription_model, phonemize=True ) sim_o_score = sim_o( out_path, prompt_path, device=tts.device, dtype=tts.dtype, model_name=args.speaker_similarity_model ) metrics = {"wer": wer_score, "cer": cer_score, "sim-o": sim_o_score, "per": per_score, "pwer": pwer_score, "wer_un": wer_un_score, "cer_un": cer_un_score } json_write( metrics, metrics_path ) else: metrics = json_read( metrics_path ) wer_score, cer_score, per_score, sim_o_score = metrics["wer"], metrics["cer"], metrics["per"], metrics["sim-o"] if dataset_name not in metrics_map: metrics_map[dataset_name] = {} metrics_map[dataset_name][out_path] = (wer_score, cer_score, per_score, sim_o_score) # collate entries into HTML tables = [] for dataset_name, samples in outputs: table = "\t\t
Average WER: ${WER}
Average CER: ${CER}
Average PER: ${PER}
Average SIM-O: ${SIM-O}
Text | \n\t\t\t\t\tWER↓ | \n\t\t\t\t\tCER↓ | \n\t\t\t\t\tSIM-O↑ | \n\t\t\t\t\tPrompt | \n\t\t\t\t\tOur VALL-E | \n\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\tGround Truth | \n\t\t\t\t
---|