import torch import torchaudio import soundfile from torch import Tensor from einops import rearrange from pathlib import Path from .emb import g2p, qnt from .emb.qnt import trim, trim_random from .utils import to_device from .config import cfg from .models import get_models from .engines import load_engines, deepspeed_available from .data import get_phone_symmap, get_lang_symmap, _load_quants, _cleanup_phones if deepspeed_available: import deepspeed class TTS(): def __init__( self, config=None, ar_ckpt=None, nar_ckpt=None, device=None, amp=None, dtype=None ): self.loading = True self.input_sample_rate = 24000 self.output_sample_rate = 24000 if config: cfg.load_yaml( config ) cfg.dataset.use_hdf5 = False # could use cfg.load_hdf5(), but why would it ever need to be loaded for inferencing try: cfg.format() except Exception as e: pass if amp is None: amp = cfg.inference.amp if dtype is None or dtype == "auto": dtype = cfg.inference.weight_dtype if device is None: device = cfg.device cfg.device = device cfg.mode = "inferencing" cfg.trainer.backend = cfg.inference.backend cfg.trainer.weight_dtype = dtype cfg.inference.weight_dtype = dtype self.device = device self.dtype = cfg.inference.dtype self.amp = amp self.symmap = None def parse( name, model, state ): if "userdata" in state and 'symmap' in state['userdata']: self.symmap = state['userdata']['symmap'] elif "symmap" in state: self.symmap = state['symmap'] if "module" in state: state = state['module'] model.load_state_dict(state) if cfg.inference.backend == "local" and deepspeed_available and cfg.trainer.deepspeed.inferencing: model = deepspeed.init_inference(model=model, mp_size=1, replace_with_kernel_inject=True, dtype=dtype if not amp else torch.float32).module return model if ar_ckpt and nar_ckpt: self.ar_ckpt = ar_ckpt self.nar_ckpt = nar_ckpt models = get_models(cfg.models.get(), training=False) for name, model in models.items(): if name.startswith("ar"): state = torch.load(self.ar_ckpt) self.ar = parse( name, model, state ) elif name.startswith("nar"): state = torch.load(self.nar_ckpt) self.nar = parse( name, model, state ) if name.startswith("ar+nar"): self.nar = self.ar else: self.load_models() if self.dtype != torch.int8: self.ar = self.ar.to(self.device, dtype=self.dtype if not self.amp else torch.float32) self.nar = self.nar.to(self.device, dtype=self.dtype if not self.amp else torch.float32) self.ar.eval() self.nar.eval() if self.symmap is None: self.symmap = get_phone_symmap() self.loading = False def load_models( self ): engines = load_engines(training=False) for name, engine in engines.items(): if name.startswith("ar"): self.ar = engine.module elif name.startswith("nar"): self.nar = engine.module if name.startswith("ar+nar"): self.nar = self.ar def encode_text( self, text, language="en" ): # already a tensor, return it if isinstance( text, Tensor ): return text content = g2p.encode(text, language=language) content = _cleanup_phones( content ) # ick try: phones = [""] + [ " " if not p else p for p in content ] + [""] return torch.tensor([*map(self.symmap.get, phones)]) except Exception as e: pass phones = [ " " if not p else p for p in content ] return torch.tensor([ 1 ] + [*map(self.symmap.get, phones)] + [ 2 ]) def encode_lang( self, language ): symmap = get_lang_symmap() id = 0 if language in symmap: id = symmap[language] return torch.tensor([ id ]) def encode_audio( self, paths, trim_length=0.0 ): # already a tensor, return it if isinstance( paths, Tensor ): return paths # split string into paths if isinstance( paths, str ): paths = [ Path(p) for p in paths.split(";") ] # merge inputs res = torch.cat([qnt.encode_from_file(path)[0][:, :].t().to(torch.int16) for path in paths]) if trim_length: res = trim( res, int( 75 * trim_length ) ) return res @torch.inference_mode() def inference( self, text, references, language="en", max_ar_steps=6 * 75, max_ar_context=-1, max_nar_levels=7, input_prompt_length=0.0, ar_temp=0.95, nar_temp=0.5, min_ar_temp=0.95, min_nar_temp=0.5, top_p=1.0, top_k=0, repetition_penalty=1.0, repetition_penalty_decay=0.0, length_penalty=0.0, beam_width=0, mirostat_tau=0, mirostat_eta=0.1, out_path=None ): lines = text.split("\n") wavs = [] sr = None for line in lines: if out_path is None: out_path = f"./data/{cfg.start_time}.wav" prom = self.encode_audio( references, trim_length=input_prompt_length ) phns = self.encode_text( line, language=language ) lang = self.encode_lang( language ) prom = to_device(prom, self.device).to(torch.int16) phns = to_device(phns, self.device).to(torch.uint8 if len(self.symmap) < 256 else torch.int16) lang = to_device(lang, self.device).to(torch.uint8) with torch.autocast("cuda", dtype=self.dtype, enabled=self.amp): resps_list = self.ar( text_list=[phns], proms_list=[prom], lang_list=[lang], max_steps=max_ar_steps, max_resp_context=max_ar_context, sampling_temperature=ar_temp, sampling_min_temperature=min_ar_temp, sampling_top_p=top_p, sampling_top_k=top_k, sampling_repetition_penalty=repetition_penalty, sampling_repetition_penalty_decay=repetition_penalty_decay, sampling_length_penalty=length_penalty, sampling_beam_width=beam_width, sampling_mirostat_tau=mirostat_tau, sampling_mirostat_eta=mirostat_eta, ) resps_list = [r.unsqueeze(-1) for r in resps_list] resps_list = self.nar( text_list=[phns], proms_list=[prom], lang_list=[lang], resps_list=resps_list, max_levels=max_nar_levels, sampling_temperature=nar_temp, sampling_min_temperature=min_nar_temp, sampling_top_p=top_p, sampling_top_k=top_k, sampling_repetition_penalty=repetition_penalty, sampling_repetition_penalty_decay=repetition_penalty_decay, ) wav, sr = qnt.decode_to_file(resps_list[0], out_path, device=self.device) wavs.append(wav) return (torch.concat(wavs, dim=-1), sr)