import copy
import diskcache
import h5py
import json
import os
import subprocess
import sys
import time
import argparse
import yaml
import random
import torch
import numpy as np
from dataclasses import asdict, dataclass, field
from functools import cached_property
from pathlib import Path
from .utils.distributed import world_size
def set_seed(seed=None):
if not seed:
seed = time.time()
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
@dataclass()
class BaseConfig:
yaml_path: str | None = None
@property
def cfg_path(self):
return Path(self.yaml_path.parent) if self.yaml_path is not None else None
@property
def rel_path(self):
return Path(self.cfg_path)
@property
def cache_dir(self):
return self.rel_path / ".cache"
@property
def data_dir(self):
return self.rel_path / "data"
@property
def metadata_dir(self):
return self.rel_path / "metadata"
@property
def ckpt_dir(self):
return self.rel_path / "ckpt"
@property
def log_dir(self):
return self.rel_path / "logs" / str(self.start_time)
@cached_property
def start_time(self):
return int(time.time())
@cached_property
def git_commit(self):
try:
cmd = "git rev-parse HEAD"
return subprocess.check_output(cmd.split()).decode("utf8").strip()
except:
return ""
@cached_property
def git_status(self):
try:
cmd = "git status"
return subprocess.check_output(cmd.split()).decode("utf8").strip()
except:
return ""
def dumps(self):
data = {k: getattr(self, k) for k in dir(self) if not k.startswith("__")}
data = {k: v for k, v in data.items() if not callable(v)}
return json.dumps(data, indent=2, default=str)
def dump(self, path=None):
if path is None:
path = self.log_dir / "cfg.json"
path.parent.mkdir(parents=True, exist_ok=True)
with open(path, "w") as f:
f.write(self.dumps())
@classmethod
def from_yaml( cls, yaml_path ):
state = {}
state = yaml.safe_load(open(yaml_path, "r", encoding="utf-8"))
state.setdefault("yaml_path", yaml_path)
return cls(**state)
@classmethod
def from_cli(cls, args=sys.argv):
# legacy support for yaml=`` format
for i, arg in enumerate(args):
if arg.startswith("yaml"):
args[i] = f'--{arg}'
parser = argparse.ArgumentParser(allow_abbrev=False)
parser.add_argument("--yaml", type=Path, default=os.environ.get('VALLE_YAML', None)) # os environ so it can be specified in a HuggingFace Space too
args, unknown = parser.parse_known_args(args=args)
if args.yaml:
return cls.from_yaml( args.yaml )
return cls(**{})
def __repr__(self):
return str(self)
def __str__(self):
return self.dumps()
@dataclass()
class Dataset:
training: list[Path] = field(default_factory=lambda: [])
validation: list[Path] = field(default_factory=lambda: [])
noise: list[Path] = field(default_factory=lambda: [])
temp: list[Path] = field(default_factory=lambda: [])
speaker_name_getter: str = "lambda p: f'{p.parts[-3]}_{p.parts[-2]}'"
speaker_group_getter: str = "lambda p: f'{p.parts[-3]}'"
speaker_languages: dict = field(default_factory=lambda: {}) # dict where keys are the language codes and values are the speaker groups
hdf5_name: str = "data.h5"
use_hdf5: bool = False
hdf5_flag: str = "a"
use_metadata: bool = False
validate: bool = True
workers: int = 8
cache: bool = True
phones_range: list[int] = field(default_factory=lambda: [4, 256])
duration_range: list[float] = field(default_factory=lambda: [1.0, 12.0])
prompt_duration_range: list[float] = field(default_factory=lambda: [3.0, 6.0])
min_utterances: int = 2
random_utterance: float = 1.0
max_prompts: int = 3
prompt_duration: float = 0.0 # legacy
max_resps: int = 1
p_resp_append: float = 1.0
sample_type: str = "path" # path | speaker
sample_order: str = "interleaved" # duration
sample_max_duration_batch: float = 0.0 # total number of seconds of utterances per batched, 0 to disable
# for a full sized model with 12GiB of VRAM for Encodec, 120 seconds is just enough
sample_shuffle: bool = True #
tasks_list: list[str] = field(default_factory=lambda: ["tts"])
reencode_on_concat: bool = False # whether to concat audio by decode => concat => encode, or naively concat codes
reencode_device: str = "cpu" # "cpu" is slower but saves memory, cuda throws [rank0]: RuntimeError: Cannot re-initialize CUDA in forked subprocess. To use CUDA with multiprocessing, you must use the 'spawn' start method
noise_scale: float = 0.25 # scaling noise value
_frames_per_second: int = 0 # allows setting your own hint
@cached_property
def frames_per_second(self):
if self._frames_per_second > 0:
return self._frames_per_second
if cfg.audio_backend == "dac":
# using the 44KHz model with 24KHz sources has a frame rate of 41Hz
if cfg.variable_sample_rate and cfg.sample_rate == 24_000:
return 41
if cfg.sample_rate == 44_000 or cfg.sample_rate == 44_100: # to-do: find the actual value for 44.1K
return 86
if cfg.sample_rate == 16_000:
return 50
# 24Khz Encodec / Vocos and incidentally DAC are all at 75Hz
return 75
@property
def min_phones(self):
return self.phones_range[0]
@property
def max_phones(self):
return self.phones_range[1]
@property
def min_duration(self):
return self.duration_range[0]
@property
def max_duration(self):
return self.duration_range[1]
@dataclass()
class ModelExperimentalSettings:
hf: bool = False # strictly utilizes a HF model and handles converting input IDs / outputs accordingly
interleave: bool = False # use an interleaved AR rather than a split AR + NAR (worse performance and results due to everything being causal)
split_classifiers: bool = False # each RVQ level gets its own classifier / output proj / LM head
audio_embedding_sums: bool = False # whether each pass uses the previous RVQ codes or only the current level
audio_embedding_mode: str | None = None # None | "exclusive" | "inclusive", subjugates the audio backend's encoding/decoding model for embeddings
kv_heads: int = 0 # MHA or GQA (for supported backends)
p_rvq_levels: str = "auto" # determines odds of selecting RVQ levels when training, "equal" will make each level equally likely
rvq_level_range: list = field(default_factory=lambda: []) # some cringe to try and limit the RVQ training range
unified_position_ids: bool = True # False will generate position IDs partitioned for each section
# I really need to clean this up
@dataclass()
class Model:
name: str = "ar+nar" # vanity name for the model
version: int = 5 # 1 = old with MultiEmbedding, 2 = new with AudioEmbedding, 3+ = additional embeddings
size: str | dict = "full" # preset string or explicitly defined dimensionality
resp_levels: int = 8 # RVQ-bin levels this model supports
tasks: int = 8 # ["tts", "ns", "sr", "tse", "cse", "nse"] and leaves two more for anything else I want (like "svc") (unused)
langs: int = 1 # defined languages (semi-unused)
tones: int = 1 # defined tones (unsued)
experts: int = 1 # for mixtral / retnet-ts
arch_type: str = "llama" # underling LM architecture used
training: bool = True # I really need to attend to this
frozen_params: list[str] = field(default_factory=lambda: []) # frozen parameters that are not updated when training
attention: str = "auto" # for llama arch_types: attention used
dropout: float = 0.1 # adjustable dropout value
#loss_factors: dict = field(default_factory=lambda: { "text": 0.1, "prom": 1.0, "resp": 1.0 }) # disable it by default since it causes a little more harm than good
loss_factors: dict = field(default_factory=lambda: {})
capabilities: list = field(default_factory=lambda: ["ar", "nar"])
experimental: dict | ModelExperimentalSettings | None = None # experimental settings
def get(self, name=None):
return [ self ] if not name or self.name == name else []
def loss_factor(self, k):
return self.loss_factors[k] if k in self.loss_factors else 1.0
@property
def max_levels(self):
# return RVQ level range
if self.experimental is not None and self.experimental.rvq_level_range:
return self.experimental.rvq_level_range[-1]
return self.resp_levels
@property
# required for fp8 as the lengths needs to be divisible by 8
def input_alignment(self):
return 8 if cfg.optimizations.fp8 else 0
@property
def full_name(self):
name = [ self.name ]
if isinstance(self.size, dict):
if hasattr(self.size, "label") and self.size['label']:
name.append(f"{self.size['label']}")
elif isinstance(self.size, str) and self.size != "full":
name.append(self.size)
if self.experts > 1:
name.append(f'{self.experts}x'+self.arch_type.replace("/", "-"))
else:
name.append(self.arch_type.replace("/", "-"))
if cfg.optimizations.bitnet:
name.append("bitnet")
name.append(f'{self.resp_levels}')
return "-".join(name)
@property
def tokens(self):
return self.audio_tokens
@property
def audio_tokens(self):
if isinstance(self.size, dict) and hasattr(self.size, "audio_tokens"):
return self.size['audio_tokens']
return 1024
@property
def text_tokens(self):
if isinstance(self.size, dict) and hasattr(self.size, "text_tokens"):
return self.size['text_tokens']
return 256
@property
def dim(self):
if isinstance(self.size, dict) and hasattr(self.size, "dim"):
return self.size['dim']
if isinstance(self.size, float):
return math.floor(1024 * self.size)
if self.size == "quarter":
return 256
if self.size == "half":
return 512
return 1024
@property
def heads(self):
if isinstance(self.size, dict) and hasattr(self.size, "heads"):
return self.size['heads']
if isinstance(self.size, float):
return math.floor(16 * self.size)
if self.size == "quarter":
return 4
if self.size == "half":
return 8
return 16
@property
def layers(self):
if isinstance(self.size, dict) and hasattr(self.size, "layers"):
return self.size['layers']
if self.size == "double":
return 24
return 12
@property
def activation_checkpointing(self):
return cfg.trainer.activation_checkpointing
@property
def gradient_checkpointing(self):
return cfg.trainer.gradient_checkpointing
@property
def lora_policy(self):
include = ["model"] # by default only adapt the main model (not embeddings nor classifier/output projection/LM head/whatever)
exclude = []
if self.arch_type == "llama":
include = ["self_attn", "mlp"] # target only the attention + mlp
exclude = ["self_attn.k_proj"] # common literature says to ignore it
if self.arch_type == "retnet":
include = ["layers."] # target the core layers of the RetNet and ignore the auxiliary stuff
exclude = ["retention.k_proj"] # attention-based transformers ignore the K, so might as well ignore it for the retnet
return dict(include=include, exclude=exclude)
@dataclass()
class LoRA:
name: str = "lora" # vanity name
# to-do: find sane default values
rank: int = 128 # rank for the LoRA
alpha: int = 128 # rank for the LoRA
training: bool = True #
parametrize: bool = False #
rvq_levels: list[int] = field(default_factory=lambda: []) # determines RVQ levels to activate the LoRA
@property
def full_name(self):
name = [ self.name, f"r{self.rank}", f"a{self.alpha}" ]
return "-".join(name)
# actually not needed anymore
def active_level( self, level ):
if not self.rvq_levels:
return True
return level in self.rvq_levels
@dataclass()
class Hyperparameters:
batch_size: int = 8
gradient_accumulation_steps: int = 32
gradient_clipping: int | float = 100
optimizer: str = "Adamw" # should be 'Prodigyopt" now
optimizer_params: dict = field(default_factory=lambda: {}) # to pass through deepspeed config
learning_rate: float = 3.25e-4 # should be 1.0 for ProdigyOpt
warmup_steps: int = 0
scheduler: str = ""
scheduler_type: str = "" # deprecated
scheduler_params: dict = field(default_factory=lambda: {}) # to pass through deepspeed config
autotune: bool = False
autotune_params: dict = field(default_factory=lambda: {}) # to pass through deepspeed config
torch_optimizer: bool = False
torch_scheduler: bool = False
@dataclass()
class Evaluation:
batch_size: int = 64
frequency: int = 250
size: int = 64
steps: int = 500
ar_temperature: float = 1.0
nar_temperature: float = 0.0
nar_levels: int = 0
load_disabled_engines: bool = True
@dataclass()
class DeepSpeed:
zero_optimization_level: int = 0
use_compression_training: bool = False # cope
compression_bits: int = 8 # cope
inferencing: bool = False # for using DeepSpeed's inferencing wrapper instead
amp: bool = False # use DeepSpeed's AMP (requires some other package installed apparently)
config: dict = field(default_factory=lambda: {}) # to pass through deepspeed config
@cached_property
def ds_cfg(self):
optimizer_params = cfg.hyperparameters.optimizer_params
if 'lr' not in optimizer_params:
optimizer_params["lr"] = cfg.hyperparameters.learning_rate,
scheduler_params = cfg.hyperparameters.scheduler_params
if 'warmup_num_steps' not in scheduler_params:
scheduler_params['warmup_num_steps'] = cfg.hyperparameters.warmup_steps
if 'total_num_steps' not in scheduler_params:
scheduler_params['total_num_steps'] = cfg.trainer.iterations
autotune_params = cfg.hyperparameters.autotune_params
if "enabled" not in autotune_params:
autotune_params['enabled'] = True
if "results_dir" not in autotune_params:
autotune_params['results_dir'] = str( cfg.rel_path / "autotune" / "results" )
if "exps_dir" not in autotune_params:
autotune_params['exps_dir'] = str( cfg.rel_path / "autotune" / "exps_" )
# DeepSpeed fp16 is incompatible with its AMP
if cfg.trainer.weight_dtype.lower() == "float16":
self.amp = False
# disable local AMP
if self.amp:
cfg.trainer.amp = False
ds_cfg = {
"train_micro_batch_size_per_gpu": cfg.hyperparameters.batch_size,
"gradient_accumulation_steps": cfg.hyperparameters.gradient_accumulation_steps,
"optimizer": {
"type": cfg.hyperparameters.optimizer,
"params": optimizer_params,
} if not cfg.hyperparameters.torch_optimizer else None,
"scheduler": {
"type": cfg.hyperparameters.scheduler,
"params": scheduler_params,
} if not cfg.hyperparameters.torch_scheduler else None,
"gradient_clipping": cfg.hyperparameters.gradient_clipping,
"fp16": {
"enabled": cfg.trainer.weight_dtype.lower() == "float16",
"auto_cast": True, # ???
},
"bf16": {
"enabled": cfg.trainer.weight_dtype.lower() == "bfloat16",
},
"amp": {
"enabled": self.amp,
},
"autotuning": autotune_params if cfg.hyperparameters.autotune else None,
"compression_training": {
"weight_quantization": {
"shared_parameters":{
"enabled": True,
"quantizer_kernel": True,
"schedule_offset": 0,
"quantize_groups": 64,
"quantize_verbose": True,
"quantization_type": "symmetric",
"rounding": "nearest",
"quantize_weight_in_forward": cfg.trainer.weight_dtype.lower() != "float16", # MoQ (quantize in optimization step) weight quantization is only supported for FP16
"fp16_mixed_quantize":{
"enabled": False,
"quantize_change_ratio": 1
}
},
"different_groups": {
"wq1": {
"params": {
"start_bits": self.compression_bits,
"target_bits": self.compression_bits,
"quantization_period": 0
},
"modules": [ "self_attn", "mlp" ] # for LLaMA, need to find for other arches
}
}
},
"activation_quantization": {
"shared_parameters":{
"enabled": True,
"quantizer_kernel": True,
"schedule_offset": 0,
"quantize_groups": 64,
"quantize_verbose": True,
"quantization_type": "symmetric",
"rounding": "nearest",
"quantize_weight_in_forward": cfg.trainer.weight_dtype.lower() != "float16", # MoQ (quantize in optimization step) weight quantization is only supported for FP16
"fp16_mixed_quantize":{
"enabled": False,
"quantize_change_ratio": 1
}
},
"different_groups": {
"aq1": {
"params": {
"bits": self.compression_bits,
},
"modules": [ "self_attn", "mlp" ] # for LLaMA, need to find for other arches
}
}
},
} if self.use_compression_training else None,
"zero_optimization": {
"stage": self.zero_optimization_level,
"contiguous_gradients": True,
"overlap_comm": True,
"reduce_scatter": True,
"reduce_bucket_size": 5e8,
"allgather_bucket_size": 5e8,
"sub_group_size": 5e8,
"round_robin_gradients": True,
"offload_optimizer": {
"device": "cpu",
"pin_memory": True
},
"offload_param": {
"device": "cpu",
"pin_memory": True
},
"zero_quantized_weights": self.use_compression_training,
"zero_hpz_partition_size": world_size(),
"zero_quantized_gradients": self.use_compression_training,
} if self.zero_optimization_level > 0 else None,
"comms_logger": {
"enabled": False
}
}
null_keys = [ k for k in ds_cfg if not ds_cfg[k] ]
for k in null_keys:
del ds_cfg[k]
if os.path.exists("./data/ds_config.json"):
ds_cfg.update(json.load(open("./data/ds_config.json", "r", encoding="utf-8")))
else:
ds_cfg.update(self.config)
return ds_cfg
@dataclass()
class Trainer:
iterations: int = 100_000
save_tag: str = "step"
load_tag: str | None = None
save_on_oom: bool = True
save_on_quit: bool = True
export_on_save: bool = False
export_on_quit: bool = False
save_frequency: int = 100
keep_last_checkpoints: int = 0
load_state_dict: bool = False
load_states: bool = True
strict_loading: bool = True
load_module_only: bool = False
restart_step_count: bool = False
activation_checkpointing: bool | None = None # deprecated, should technically be used for only on activations and not the entire gradients, but HF only has gradient checkpointing
gradient_checkpointing: bool = True
aggressive_optimizations: bool = False
check_for_oom: bool = True
gc_mode: str | None = None
load_disabled_engines: bool = False
weight_dtype: str = "float16"
amp: bool = False
ddp: bool = False
load_webui: bool = False
no_logger: bool = False
backend: str = "local"
deepspeed: DeepSpeed = field(default_factory=lambda: DeepSpeed)
@cached_property
def dtype(self):
if self.weight_dtype == "float16":
return torch.float16
if self.weight_dtype == "bfloat16":
return torch.bfloat16
if self.weight_dtype == "float8_e5m2":
return torch.float8_e5m2
if self.weight_dtype == "float8_e4m3fn":
return torch.float8_e4m3fn
return torch.float32
@cached_property
def scale_loss(self):
# currently cannot feasibly apply loss scaling with DeepSpeed backend (it can handle it itself anyways)
if self.backend != "local":
return False
return self.dtype == torch.float16
@dataclass()
class Inference:
backend: str = "local"
weight_dtype: str = "float32"
amp: bool = False
normalize: bool = False # do NOT enable this unless you know exactly what you're doing
# legacy / backwards compat
audio_backend: str = "" # encodec, vocos, dac
use_vocos: bool = True
use_encodec: bool = True
use_dac: bool = True
@property
def dtype(self):
if self.weight_dtype == "float16":
return torch.float16
if self.weight_dtype == "bfloat16":
return torch.bfloat16
if self.weight_dtype == "int8":
return torch.int8
if self.weight_dtype == "float8_e5m2":
return torch.float8_e5m2
if self.weight_dtype == "float8_e4m3fn":
return torch.float8_e4m3fn
return torch.float32
# should be renamed to optimizations
@dataclass()
class Optimizations:
injects: bool = False # overwrites default torch classes (not recommended)
replace: bool = False # replaces modules in place with the optimized version (recommended)
linear: bool = True # inject/replace linear for BnB
embedding: bool = True # inject/replace embedding for BnB
optimizers: bool = True # inject/replace optimizers (BnB, DAdaptation)
bitsandbytes: bool = False # use bitsandbytes
dadaptation: bool = False # use dadaptation optimizer
bitnet: bool = False # use bitnet
fp8: bool = False # use fp8
@dataclass()
class Config(BaseConfig):
device: str = "cuda"
mode: str = "training" # "inferencing"
experimental: bool = False # Debug flag, unused now
dataset: Dataset = field(default_factory=lambda: Dataset)
models: dict | list | None = field(default_factory=lambda: [])
loras: dict | list | None = field(default_factory=lambda: [])
hyperparameters: Hyperparameters = field(default_factory=lambda: Hyperparameters)
evaluation: Evaluation = field(default_factory=lambda: Evaluation)
trainer: Trainer = field(default_factory=lambda: Trainer)
inference: Inference = field(default_factory=lambda: Inference)
bitsandbytes: dict | list | None = None # deprecated
optimizations: Optimizations = field(default_factory=lambda: Optimizations)
tokenizer: str | None = None
tokenizer_path: str = "./tokenizer.json"
sample_rate: int = 24_000
variable_sample_rate: bool = False # NOT recommended, as running directly 24Khz audio in the 44Khz DAC model will have detrimental quality loss
audio_backend: str = "vocos"
@property
def model(self):
for i, model in enumerate(self.models):
if model.training:
return model
return self.models[0] if len(self.models) > 0 else None
@property
def lora(self):
for i, lora in enumerate(self.loras):
if lora.training:
return lora
return self.loras[0] if len(self.loras) > 0 else None
@property
def distributed(self):
return world_size() > 1
@cached_property
def get_spkr(self):
return eval(self.dataset.speaker_name_getter)
@cached_property
def get_spkr_group(self):
return eval(self.dataset.speaker_group_getter)
@cached_property
def diskcache(self):
if self.yaml_path is not None and self.dataset.cache:
return diskcache.Cache(self.cache_dir).memoize
return lambda: lambda x: x
# I don't remember why this is needed
def load_yaml( self, config_path ):
tmp = Config.from_yaml( config_path )
self.__dict__.update(tmp.__dict__)
def load_hdf5( self, write=False ):
if hasattr(self, 'hdf5'):
self.hdf5.close()
if self.distributed:
self.dataset.hdf5_flag = "r"
try:
self.hdf5 = h5py.File(f'{self.rel_path}/{self.dataset.hdf5_name}', 'a' if write else self.dataset.hdf5_flag) # to-do, have an easy to set flag that determines if training or creating the dataset
except Exception as e:
print("Error while opening HDF5 file:", f'{self.rel_path}/{self.dataset.hdf5_name}', str(e))
self.dataset.use_hdf5 = False
# to-do: prune unused keys
def format( self, training=True ):
if isinstance(self.dataset, type):
self.dataset = dict()
if isinstance(self.models, type):
self.models = dict()
if isinstance(self.loras, type):
self.loras = dict()
if isinstance(self.hyperparameters, type):
self.hyperparameters = dict()
if isinstance(self.evaluation, type):
self.evaluation = dict()
if isinstance(self.trainer, type):
self.trainer = dict()
if isinstance(self.inference, type):
self.inference = dict()
if isinstance(self.optimizations, type):
self.optimizations = dict()
self.dataset = Dataset(**self.dataset)
self.dataset.training = [ Path(dir) for dir in self.dataset.training ]
self.dataset.validation = [ Path(dir) for dir in self.dataset.validation ]
self.dataset.noise = [ Path(dir) for dir in self.dataset.noise ]
# do cleanup
for model in self.models:
if not isinstance( model, dict ):
continue
if "prom_levels" in model:
del model["prom_levels"]
if "interleave" in model:
del model["interleave"]
if "audio_embedding_sums" not in model:
continue
if "experimental" not in model or not model["experimental"]:
model["experimental"] = {}
model["experimental"]["audio_embedding_sums"] = model.pop("audio_embedding_sums")
self.models = [ Model(**model) for model in self.models ]
self.loras = [ LoRA(**lora) for lora in self.loras ]
if not self.models:
self.models = [ Model() ]
for model in self.models:
if not isinstance( model.experimental, dict ):
continue
model.experimental = ModelExperimentalSettings(**model.experimental)
self.hyperparameters = Hyperparameters(**self.hyperparameters)
self.evaluation = Evaluation(**self.evaluation)
self.trainer = Trainer(**self.trainer)
if not isinstance(self.trainer.deepspeed, type):
self.trainer.deepspeed = DeepSpeed(**self.trainer.deepspeed)
self.inference = Inference(**self.inference)
if self.bitsandbytes is not None:
self.optimizations = Optimizations(**self.bitsandbytes)
else:
self.optimizations = Optimizations(**self.optimizations)
if self.hyperparameters.scheduler_type and not self.hyperparameters.scheduler:
self.hyperparameters.scheduler = self.hyperparameters.scheduler_type
self.hyperparameters.scheduler_type = ""
# do not combine the two
if self.hyperparameters.scheduler == "schedulefree" and self.optimizations.dadaptation:
self.hyperparameters.scheduler = ""
if self.hyperparameters.scheduler == "":
self.hyperparameters.torch_scheduler = True
if self.dataset.prompt_duration != 0:
self.dataset.prompt_duration_range = [self.dataset.prompt_duration, self.dataset.prompt_duration]
if self.trainer.backend == "local" and self.distributed:
self.trainer.ddp = True
if self.inference.audio_backend != "" and self.audio_backend == "":
self.audio_backend = self.inference.audio_backend
if self.trainer.activation_checkpointing is not None:
self.trainer.gradient_checkpointing = self.trainer.activation_checkpointing
if not training:
self.dataset.use_hdf5 = False
# load our HDF5 file if requested here
if self.dataset.use_hdf5:
self.load_hdf5()
# load tokenizer
if cfg.tokenizer == "naive":
cfg.tokenizer = NaiveTokenizer()
else:
try:
from transformers import PreTrainedTokenizerFast
tokenizer_path = cfg.rel_path / cfg.tokenizer_path
if not tokenizer_path.exists():
tokenizer_path = Path("./data/") / cfg.tokenizer_path
cfg.tokenizer = PreTrainedTokenizerFast(tokenizer_file=str(tokenizer_path))
except Exception as e:
cfg.tokenizer = NaiveTokenizer()
print("Error while parsing tokenizer:", e)
pass
# Preserves the old behavior
class NaiveTokenizer:
def get_vocab( self ):
"""
if cfg.dataset.use_hdf5 and 'symmap' in cfg.hdf5:
return json.loads( cfg.hdf5['symmap'].asstr()[()] )
"""
return {'': 1, '': 2, ' ': 3, '.': 4, ',': 5, '!': 6, '?': 7, 'p': 7, 'iː': 8, 'ɚ': 9, 'ˌ': 10, 'dˌ': 11, 'mˌ': 12, 'd': 13, 'ɹ': 14, 'tˈ': 15, 'pˌ': 16, 'uː': 17, 'l': 18, 'æ': 19, 'ɛ': 20, 'ɪ': 21, 'j': 22, 'ʊ': 23, 't': 24, 'n': 25, 'v': 26, 'a': 27, 'o': 28, 'ŋ': 29, 'w': 30, 'ʌ': 31, 'hˈ': 32, 'ɡˈ': 33, 'ə': 34, 'θˈ': 35, 'dˈ': 36, 'wˌ': 37, 'h': 38, 'z': 39, 'k': 40, 'ð': 41, 'ɡˌ': 42, 'ˈ': 43, 'fˈ': 44, 'i': 45, 's': 46, 'ʃ': 47, 'wˈ': 48, 'ðˈ': 49, 'ɹˈ': 50, 'lˈ': 51, 'ɡ': 52, 'oː': 53, 'mˈ': 54, 'e': 55, 'ɑː': 56, 'nˈ': 57, 'm': 58, 'θˌ': 59, 'sˈ': 60, 'f': 61, 'ɔː': 62, 'hˌ': 63, 'b': 64, 'jˈ': 65, 'ɐ': 66, 'ʒˈ': 67, 'θ': 68, 'bˈ': 69, 'ɾ': 70, 'ɜː': 71, 'ʌˈ': 72, 'ʃˌ': 73, 'bˌ': 74, 'kˈ': 75, 'ɔ': 76, 'zˈ': 77, 'ᵻ': 78, 'kˌ': 79, 'vˈ': 80, 'fˌ': 81, 'ʒ': 82, 'ʃˈ': 83, 'ɹˌ': 84, 'tˌ': 85, 'pˈ': 86, 'ðˌ': 87, 'sˌ': 88, 'nˌ': 89, 'lˌ': 90, '̩': 91, 'ʔ': 92, 'vˌ': 93, 'ɪˈ': 94, '"': 95, 'ɪˌ': 96, 'ʒˌ': 97, 'uːˌ': 98, 'ʊˈ': 99, 'jˌ': 100, 'uːˈ': 101, 'iːˈ': 102, 'zˌ': 103, '.ˈ': 104, '…': 105, 'ŋˌ': 106, 'ɐˌ': 107, '—ˈ': 108, 'iˌ': 109, 'iːˌ': 110, 'ɛː': 111, ')': 112, ')ˈ': 113, '(': 114, 'u': 115, '-': 116, 'ɖˈ': 117, 'iˈ': 118, 'ʰˈ': 119, 'ɟˈ': 120, '̃': 121, 'eː': 122, 'ɾˈ': 123, 'r': 124, 'ʰ': 125, '-ˌ': 126, 'ɫ': 127, 'q': 128, '—': 129, 'ʊˌ': 130, 'aː': 131, 'cˈ': 132, '…ˈ': 133, 'c': 134, 'ɳ': 135, 'ɐˈ': 136, 'x': 137, 'ʔˌ': 138, '.ˌ': 139, 'ɑ': 140, '?ˈ': 141, '̩ˈ': 142, '"ˈ': 143, ',ˈ': 144, 'ŋˈ': 145, 'əˌ': 146, '!ˈ': 147, '"ˌ': 148, '?ˌ': 149, ',ˌ': 150, '—ˌ': 151, '̩ˌ': 152, 'əˈ': 153, '!ˌ': 154, 'ɬ': 155, 'ʲ': 156, '¡': 157, 'ɯ': 158, 'qˌ': 159, 'ʑ': 160, 'ʑˈ': 161, '¿': 162, 'ɑːˈ': 163, 'iːː': 164, 'ɛˈ': 165, '¡ˈ': 166, 'æˈ': 167, 'ç': 168, 'ɾˌ': 169, 'ᵻˈ': 170, 'xˈ': 171, 'ɔːˈ': 172, ';': 173, 'ɬˌ': 174, ':': 175, 'ʔˈ': 176, 'ɑːˌ': 177, 'ɬˈ': 178, '”': 179, '“': 180, '“ˈ': 181, '“ˌ': 182, ';ˈ': 183, ';ˌ': 184, ':ˈ': 185, '1': 186, 'rˈ': 187, 'qˈ': 188, 'ᵻˌ': 189, 'ä': 190, '̞ˌ': 191, '̞': 192, 'ũˌ': 193, 'ʑˌ': 194, 'ᵝ': 195, 'ɽ': 196, 'ʲˌ': 197, 'ᵝˌ': 198, 'ũ': 199, 'ũˈ': 200, 'äˌ': 201, 'ɕ': 202, 'ɕˌ': 203, 'ɽˌ': 204, 'çˌ': 205, '…ˌ': 206, '̞ˈ': 207, 'äˈ': 208, 'ɽˈ': 209, 'ɸˌ': 210, 'ɴ': 211, 'ɸˈ': 212, 'ɕˈ': 213, 'ɸ': 214, 'ᵝˈ': 215, 'ʲˈ': 216, 'ĩ': 217, 'çˈ': 218, 'ĩˌ': 219, 'oˌ': 220, 'eˈ': 221, 'ʍ': 222, 'eˌ': 223, 'uˌ': 224, 'ʍˌ': 225, 'uˈ': 226, 'oˈ': 227, 'aˈ': 228}
@cached_property
def _bos_token( self ):
return self.get_vocab()[""]
@cached_property
def _eos_token( self ):
return self.get_vocab()[""]
def encode( self, s ):
symmap = self.get_vocab()
phones = " ".join( list(s) )
# do merge
for merge in [ "\u02C8", "\u02CC", "\u02D0" ]:
phones = phones.replace( f' {merge}', merge )
phones = phones.split(" ")
# cleanup
phones = [ p for i, p in enumerate(phones) if p not in [" "] or ( p in [" "] and p != phones[i-1] ) ]
# add bos / eos
phones = [""] + [ " " if not p else p for p in phones ] + [""]
# tokenize
return [*map(symmap.get, phones)]
cfg = Config.from_cli()
# some safety for remapping deprecated formats and re-coercing uninitialized properties into actual types
try:
cfg.format()
except Exception as e:
print("Error while parsing config YAML:")
raise e # throw an error because I'm tired of silent errors messing things up for me
if __name__ == "__main__":
print(cfg)