import copy import diskcache import h5py import json import os import subprocess import sys import time import argparse import yaml import random import torch import numpy as np from dataclasses import asdict, dataclass, field from functools import cached_property from pathlib import Path from .utils.distributed import world_size def set_seed(seed=None): if not seed: seed = time.time() random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) @dataclass() class BaseConfig: yaml_path: str | None = None @property def cfg_path(self): return Path(self.yaml_path.parent) if self.yaml_path is not None else None @property def rel_path(self): return Path(self.cfg_path) @property def cache_dir(self): return self.rel_path / ".cache" @property def data_dir(self): return self.rel_path / "data" @property def metadata_dir(self): return self.rel_path / "metadata" @property def ckpt_dir(self): return self.rel_path / "ckpt" @property def log_dir(self): return self.rel_path / "logs" / str(self.start_time) @cached_property def start_time(self): return int(time.time()) @cached_property def git_commit(self): try: cmd = "git rev-parse HEAD" return subprocess.check_output(cmd.split()).decode("utf8").strip() except: return "" @cached_property def git_status(self): try: cmd = "git status" return subprocess.check_output(cmd.split()).decode("utf8").strip() except: return "" def dumps(self): data = {k: getattr(self, k) for k in dir(self) if not k.startswith("__")} data = {k: v for k, v in data.items() if not callable(v)} return json.dumps(data, indent=2, default=str) def dump(self, path=None): if path is None: path = self.log_dir / "cfg.json" path.parent.mkdir(parents=True, exist_ok=True) with open(path, "w") as f: f.write(self.dumps()) @classmethod def from_yaml( cls, yaml_path ): state = {} state = yaml.safe_load(open(yaml_path, "r", encoding="utf-8")) state.setdefault("yaml_path", yaml_path) return cls(**state) @classmethod def from_cli(cls, args=sys.argv): # legacy support for yaml=`` format for i, arg in enumerate(args): if arg.startswith("yaml"): args[i] = f'--{arg}' parser = argparse.ArgumentParser(allow_abbrev=False) parser.add_argument("--yaml", type=Path, default=os.environ.get('VALLE_YAML', None)) # os environ so it can be specified in a HuggingFace Space too args, unknown = parser.parse_known_args(args=args) if args.yaml: return cls.from_yaml( args.yaml ) return cls(**{}) def __repr__(self): return str(self) def __str__(self): return self.dumps() @dataclass() class Dataset: training: list[Path] = field(default_factory=lambda: []) validation: list[Path] = field(default_factory=lambda: []) noise: list[Path] = field(default_factory=lambda: []) temp: list[Path] = field(default_factory=lambda: []) speaker_name_getter: str = "lambda p: f'{p.parts[-3]}_{p.parts[-2]}'" speaker_group_getter: str = "lambda p: f'{p.parts[-3]}'" speaker_languages: dict = field(default_factory=lambda: {}) # dict where keys are the language codes and values are the speaker groups hdf5_name: str = "data.h5" use_hdf5: bool = False hdf5_flag: str = "a" use_metadata: bool = False validate: bool = True workers: int = 8 cache: bool = True phones_range: list[int] = field(default_factory=lambda: [4, 256]) duration_range: list[float] = field(default_factory=lambda: [1.0, 12.0]) prompt_duration_range: list[float] = field(default_factory=lambda: [3.0, 6.0]) min_utterances: int = 2 random_utterance: float = 1.0 max_prompts: int = 3 prompt_duration: float = 0.0 # legacy max_resps: int = 1 p_resp_append: float = 1.0 sample_type: str = "path" # path | speaker sample_order: str = "interleaved" # duration sample_max_duration_batch: float = 0.0 # total number of seconds of utterances per batched, 0 to disable # for a full sized model with 12GiB of VRAM for Encodec, 120 seconds is just enough sample_shuffle: bool = True # tasks_list: list[str] = field(default_factory=lambda: ["tts"]) reencode_on_concat: bool = False # whether to concat audio by decode => concat => encode, or naively concat codes reencode_device: str = "cpu" # "cpu" is slower but saves memory, cuda throws [rank0]: RuntimeError: Cannot re-initialize CUDA in forked subprocess. To use CUDA with multiprocessing, you must use the 'spawn' start method noise_scale: float = 0.25 # scaling noise value _frames_per_second: int = 0 # allows setting your own hint @cached_property def frames_per_second(self): if self._frames_per_second > 0: return self._frames_per_second if cfg.audio_backend == "dac": # using the 44KHz model with 24KHz sources has a frame rate of 41Hz if cfg.variable_sample_rate and cfg.sample_rate == 24_000: return 41 if cfg.sample_rate == 44_000 or cfg.sample_rate == 44_100: # to-do: find the actual value for 44.1K return 86 if cfg.sample_rate == 16_000: return 50 # 24Khz Encodec / Vocos and incidentally DAC are all at 75Hz return 75 @property def min_phones(self): return self.phones_range[0] @property def max_phones(self): return self.phones_range[1] @property def min_duration(self): return self.duration_range[0] @property def max_duration(self): return self.duration_range[1] @dataclass() class ModelExperimentalSettings: hf: bool = False # strictly utilizes a HF model and handles converting input IDs / outputs accordingly interleave: bool = False # use an interleaved AR rather than a split AR + NAR (worse performance and results due to everything being causal) split_classifiers: bool = False # each RVQ level gets its own classifier / output proj / LM head audio_embedding_sums: bool = False # whether each pass uses the previous RVQ codes or only the current level audio_embedding_mode: str | None = None # None | "exclusive" | "inclusive", subjugates the audio backend's encoding/decoding model for embeddings kv_heads: int = 0 # MHA or GQA (for supported backends) p_rvq_levels: str = "auto" # determines odds of selecting RVQ levels when training, "equal" will make each level equally likely rvq_level_range: list = field(default_factory=lambda: []) # some cringe to try and limit the RVQ training range unified_position_ids: bool = True # False will generate position IDs partitioned for each section # I really need to clean this up @dataclass() class Model: name: str = "ar+nar" # vanity name for the model version: int = 5 # 1 = old with MultiEmbedding, 2 = new with AudioEmbedding, 3+ = additional embeddings size: str | dict = "full" # preset string or explicitly defined dimensionality resp_levels: int = 8 # RVQ-bin levels this model supports tasks: int = 8 # ["tts", "ns", "sr", "tse", "cse", "nse"] and leaves two more for anything else I want (like "svc") (unused) langs: int = 1 # defined languages (semi-unused) tones: int = 1 # defined tones (unsued) experts: int = 1 # for mixtral / retnet-ts arch_type: str = "llama" # underling LM architecture used training: bool = True # I really need to attend to this frozen_params: list[str] = field(default_factory=lambda: []) # frozen parameters that are not updated when training attention: str = "auto" # for llama arch_types: attention used dropout: float = 0.1 # adjustable dropout value #loss_factors: dict = field(default_factory=lambda: { "text": 0.1, "prom": 1.0, "resp": 1.0 }) # disable it by default since it causes a little more harm than good loss_factors: dict = field(default_factory=lambda: {}) capabilities: list = field(default_factory=lambda: ["ar", "nar"]) experimental: dict | ModelExperimentalSettings | None = None # experimental settings def get(self, name=None): return [ self ] if not name or self.name == name else [] def loss_factor(self, k): return self.loss_factors[k] if k in self.loss_factors else 1.0 @property def max_levels(self): # return RVQ level range if self.experimental is not None and self.experimental.rvq_level_range: return self.experimental.rvq_level_range[-1] return self.resp_levels @property # required for fp8 as the lengths needs to be divisible by 8 def input_alignment(self): return 8 if cfg.optimizations.fp8 else 0 @property def full_name(self): name = [ self.name ] if isinstance(self.size, dict): if hasattr(self.size, "label") and self.size['label']: name.append(f"{self.size['label']}") elif isinstance(self.size, str) and self.size != "full": name.append(self.size) if self.experts > 1: name.append(f'{self.experts}x'+self.arch_type.replace("/", "-")) else: name.append(self.arch_type.replace("/", "-")) if cfg.optimizations.bitnet: name.append("bitnet") name.append(f'{self.resp_levels}') return "-".join(name) @property def tokens(self): return self.audio_tokens @property def audio_tokens(self): if isinstance(self.size, dict) and hasattr(self.size, "audio_tokens"): return self.size['audio_tokens'] return 1024 @property def text_tokens(self): if isinstance(self.size, dict) and hasattr(self.size, "text_tokens"): return self.size['text_tokens'] return 256 @property def dim(self): if isinstance(self.size, dict) and hasattr(self.size, "dim"): return self.size['dim'] if isinstance(self.size, float): return math.floor(1024 * self.size) if self.size == "quarter": return 256 if self.size == "half": return 512 return 1024 @property def heads(self): if isinstance(self.size, dict) and hasattr(self.size, "heads"): return self.size['heads'] if isinstance(self.size, float): return math.floor(16 * self.size) if self.size == "quarter": return 4 if self.size == "half": return 8 return 16 @property def layers(self): if isinstance(self.size, dict) and hasattr(self.size, "layers"): return self.size['layers'] if self.size == "double": return 24 return 12 @property def activation_checkpointing(self): return cfg.trainer.activation_checkpointing @property def gradient_checkpointing(self): return cfg.trainer.gradient_checkpointing @property def lora_policy(self): include = ["model"] # by default only adapt the main model (not embeddings nor classifier/output projection/LM head/whatever) exclude = [] if self.arch_type == "llama": include = ["self_attn", "mlp"] # target only the attention + mlp exclude = ["self_attn.k_proj"] # common literature says to ignore it if self.arch_type == "retnet": include = ["layers."] # target the core layers of the RetNet and ignore the auxiliary stuff exclude = ["retention.k_proj"] # attention-based transformers ignore the K, so might as well ignore it for the retnet return dict(include=include, exclude=exclude) @dataclass() class LoRA: name: str = "lora" # vanity name # to-do: find sane default values rank: int = 128 # rank for the LoRA alpha: int = 128 # rank for the LoRA training: bool = True # parametrize: bool = False # rvq_levels: list[int] = field(default_factory=lambda: []) # determines RVQ levels to activate the LoRA @property def full_name(self): name = [ self.name, f"r{self.rank}", f"a{self.alpha}" ] return "-".join(name) # actually not needed anymore def active_level( self, level ): if not self.rvq_levels: return True return level in self.rvq_levels @dataclass() class Hyperparameters: batch_size: int = 8 gradient_accumulation_steps: int = 32 gradient_clipping: int | float = 100 optimizer: str = "Adamw" # should be 'Prodigyopt" now optimizer_params: dict = field(default_factory=lambda: {}) # to pass through deepspeed config learning_rate: float = 3.25e-4 # should be 1.0 for ProdigyOpt warmup_steps: int = 0 scheduler: str = "" scheduler_type: str = "" # deprecated scheduler_params: dict = field(default_factory=lambda: {}) # to pass through deepspeed config autotune: bool = False autotune_params: dict = field(default_factory=lambda: {}) # to pass through deepspeed config torch_optimizer: bool = False torch_scheduler: bool = False @dataclass() class Evaluation: batch_size: int = 64 frequency: int = 250 size: int = 64 steps: int = 500 ar_temperature: float = 1.0 nar_temperature: float = 0.0 nar_levels: int = 0 load_disabled_engines: bool = True @dataclass() class DeepSpeed: zero_optimization_level: int = 0 use_compression_training: bool = False # cope compression_bits: int = 8 # cope inferencing: bool = False # for using DeepSpeed's inferencing wrapper instead amp: bool = False # use DeepSpeed's AMP (requires some other package installed apparently) config: dict = field(default_factory=lambda: {}) # to pass through deepspeed config @cached_property def ds_cfg(self): optimizer_params = cfg.hyperparameters.optimizer_params if 'lr' not in optimizer_params: optimizer_params["lr"] = cfg.hyperparameters.learning_rate, scheduler_params = cfg.hyperparameters.scheduler_params if 'warmup_num_steps' not in scheduler_params: scheduler_params['warmup_num_steps'] = cfg.hyperparameters.warmup_steps if 'total_num_steps' not in scheduler_params: scheduler_params['total_num_steps'] = cfg.trainer.iterations autotune_params = cfg.hyperparameters.autotune_params if "enabled" not in autotune_params: autotune_params['enabled'] = True if "results_dir" not in autotune_params: autotune_params['results_dir'] = str( cfg.rel_path / "autotune" / "results" ) if "exps_dir" not in autotune_params: autotune_params['exps_dir'] = str( cfg.rel_path / "autotune" / "exps_" ) # DeepSpeed fp16 is incompatible with its AMP if cfg.trainer.weight_dtype.lower() == "float16": self.amp = False # disable local AMP if self.amp: cfg.trainer.amp = False ds_cfg = { "train_micro_batch_size_per_gpu": cfg.hyperparameters.batch_size, "gradient_accumulation_steps": cfg.hyperparameters.gradient_accumulation_steps, "optimizer": { "type": cfg.hyperparameters.optimizer, "params": optimizer_params, } if not cfg.hyperparameters.torch_optimizer else None, "scheduler": { "type": cfg.hyperparameters.scheduler, "params": scheduler_params, } if not cfg.hyperparameters.torch_scheduler else None, "gradient_clipping": cfg.hyperparameters.gradient_clipping, "fp16": { "enabled": cfg.trainer.weight_dtype.lower() == "float16", "auto_cast": True, # ??? }, "bf16": { "enabled": cfg.trainer.weight_dtype.lower() == "bfloat16", }, "amp": { "enabled": self.amp, }, "autotuning": autotune_params if cfg.hyperparameters.autotune else None, "compression_training": { "weight_quantization": { "shared_parameters":{ "enabled": True, "quantizer_kernel": True, "schedule_offset": 0, "quantize_groups": 64, "quantize_verbose": True, "quantization_type": "symmetric", "rounding": "nearest", "quantize_weight_in_forward": cfg.trainer.weight_dtype.lower() != "float16", # MoQ (quantize in optimization step) weight quantization is only supported for FP16 "fp16_mixed_quantize":{ "enabled": False, "quantize_change_ratio": 1 } }, "different_groups": { "wq1": { "params": { "start_bits": self.compression_bits, "target_bits": self.compression_bits, "quantization_period": 0 }, "modules": [ "self_attn", "mlp" ] # for LLaMA, need to find for other arches } } }, "activation_quantization": { "shared_parameters":{ "enabled": True, "quantizer_kernel": True, "schedule_offset": 0, "quantize_groups": 64, "quantize_verbose": True, "quantization_type": "symmetric", "rounding": "nearest", "quantize_weight_in_forward": cfg.trainer.weight_dtype.lower() != "float16", # MoQ (quantize in optimization step) weight quantization is only supported for FP16 "fp16_mixed_quantize":{ "enabled": False, "quantize_change_ratio": 1 } }, "different_groups": { "aq1": { "params": { "bits": self.compression_bits, }, "modules": [ "self_attn", "mlp" ] # for LLaMA, need to find for other arches } } }, } if self.use_compression_training else None, "zero_optimization": { "stage": self.zero_optimization_level, "contiguous_gradients": True, "overlap_comm": True, "reduce_scatter": True, "reduce_bucket_size": 5e8, "allgather_bucket_size": 5e8, "sub_group_size": 5e8, "round_robin_gradients": True, "offload_optimizer": { "device": "cpu", "pin_memory": True }, "offload_param": { "device": "cpu", "pin_memory": True }, "zero_quantized_weights": self.use_compression_training, "zero_hpz_partition_size": world_size(), "zero_quantized_gradients": self.use_compression_training, } if self.zero_optimization_level > 0 else None, "comms_logger": { "enabled": False } } null_keys = [ k for k in ds_cfg if not ds_cfg[k] ] for k in null_keys: del ds_cfg[k] if os.path.exists("./data/ds_config.json"): ds_cfg.update(json.load(open("./data/ds_config.json", "r", encoding="utf-8"))) else: ds_cfg.update(self.config) return ds_cfg @dataclass() class Trainer: iterations: int = 100_000 save_tag: str = "step" load_tag: str | None = None save_on_oom: bool = True save_on_quit: bool = True export_on_save: bool = False export_on_quit: bool = False save_frequency: int = 100 keep_last_checkpoints: int = 0 load_state_dict: bool = False load_states: bool = True strict_loading: bool = True load_module_only: bool = False restart_step_count: bool = False activation_checkpointing: bool | None = None # deprecated, should technically be used for only on activations and not the entire gradients, but HF only has gradient checkpointing gradient_checkpointing: bool = True aggressive_optimizations: bool = False check_for_oom: bool = True gc_mode: str | None = None load_disabled_engines: bool = False weight_dtype: str = "float16" amp: bool = False ddp: bool = False load_webui: bool = False no_logger: bool = False backend: str = "local" deepspeed: DeepSpeed = field(default_factory=lambda: DeepSpeed) @cached_property def dtype(self): if self.weight_dtype == "float16": return torch.float16 if self.weight_dtype == "bfloat16": return torch.bfloat16 if self.weight_dtype == "float8_e5m2": return torch.float8_e5m2 if self.weight_dtype == "float8_e4m3fn": return torch.float8_e4m3fn return torch.float32 @cached_property def scale_loss(self): # currently cannot feasibly apply loss scaling with DeepSpeed backend (it can handle it itself anyways) if self.backend != "local": return False return self.dtype == torch.float16 @dataclass() class Inference: backend: str = "local" weight_dtype: str = "float32" amp: bool = False normalize: bool = False # do NOT enable this unless you know exactly what you're doing # legacy / backwards compat audio_backend: str = "" # encodec, vocos, dac use_vocos: bool = True use_encodec: bool = True use_dac: bool = True @property def dtype(self): if self.weight_dtype == "float16": return torch.float16 if self.weight_dtype == "bfloat16": return torch.bfloat16 if self.weight_dtype == "int8": return torch.int8 if self.weight_dtype == "float8_e5m2": return torch.float8_e5m2 if self.weight_dtype == "float8_e4m3fn": return torch.float8_e4m3fn return torch.float32 # should be renamed to optimizations @dataclass() class Optimizations: injects: bool = False # overwrites default torch classes (not recommended) replace: bool = False # replaces modules in place with the optimized version (recommended) linear: bool = True # inject/replace linear for BnB embedding: bool = True # inject/replace embedding for BnB optimizers: bool = True # inject/replace optimizers (BnB, DAdaptation) bitsandbytes: bool = False # use bitsandbytes dadaptation: bool = False # use dadaptation optimizer bitnet: bool = False # use bitnet fp8: bool = False # use fp8 @dataclass() class Config(BaseConfig): device: str = "cuda" mode: str = "training" # "inferencing" experimental: bool = False # Debug flag, unused now dataset: Dataset = field(default_factory=lambda: Dataset) models: dict | list | None = field(default_factory=lambda: []) loras: dict | list | None = field(default_factory=lambda: []) hyperparameters: Hyperparameters = field(default_factory=lambda: Hyperparameters) evaluation: Evaluation = field(default_factory=lambda: Evaluation) trainer: Trainer = field(default_factory=lambda: Trainer) inference: Inference = field(default_factory=lambda: Inference) bitsandbytes: dict | list | None = None # deprecated optimizations: Optimizations = field(default_factory=lambda: Optimizations) tokenizer: str | None = None tokenizer_path: str = "./tokenizer.json" sample_rate: int = 24_000 variable_sample_rate: bool = False # NOT recommended, as running directly 24Khz audio in the 44Khz DAC model will have detrimental quality loss audio_backend: str = "vocos" @property def model(self): for i, model in enumerate(self.models): if model.training: return model return self.models[0] if len(self.models) > 0 else None @property def lora(self): for i, lora in enumerate(self.loras): if lora.training: return lora return self.loras[0] if len(self.loras) > 0 else None @property def distributed(self): return world_size() > 1 @cached_property def get_spkr(self): return eval(self.dataset.speaker_name_getter) @cached_property def get_spkr_group(self): return eval(self.dataset.speaker_group_getter) @cached_property def diskcache(self): if self.yaml_path is not None and self.dataset.cache: return diskcache.Cache(self.cache_dir).memoize return lambda: lambda x: x # I don't remember why this is needed def load_yaml( self, config_path ): tmp = Config.from_yaml( config_path ) self.__dict__.update(tmp.__dict__) def load_hdf5( self, write=False ): if hasattr(self, 'hdf5'): self.hdf5.close() if self.distributed: self.dataset.hdf5_flag = "r" try: self.hdf5 = h5py.File(f'{self.rel_path}/{self.dataset.hdf5_name}', 'a' if write else self.dataset.hdf5_flag) # to-do, have an easy to set flag that determines if training or creating the dataset except Exception as e: print("Error while opening HDF5 file:", f'{self.rel_path}/{self.dataset.hdf5_name}', str(e)) self.dataset.use_hdf5 = False # to-do: prune unused keys def format( self, training=True ): if isinstance(self.dataset, type): self.dataset = dict() if isinstance(self.models, type): self.models = dict() if isinstance(self.loras, type): self.loras = dict() if isinstance(self.hyperparameters, type): self.hyperparameters = dict() if isinstance(self.evaluation, type): self.evaluation = dict() if isinstance(self.trainer, type): self.trainer = dict() if isinstance(self.inference, type): self.inference = dict() if isinstance(self.optimizations, type): self.optimizations = dict() self.dataset = Dataset(**self.dataset) self.dataset.training = [ Path(dir) for dir in self.dataset.training ] self.dataset.validation = [ Path(dir) for dir in self.dataset.validation ] self.dataset.noise = [ Path(dir) for dir in self.dataset.noise ] # do cleanup for model in self.models: if not isinstance( model, dict ): continue if "prom_levels" in model: del model["prom_levels"] if "interleave" in model: del model["interleave"] if "audio_embedding_sums" not in model: continue if "experimental" not in model or not model["experimental"]: model["experimental"] = {} model["experimental"]["audio_embedding_sums"] = model.pop("audio_embedding_sums") self.models = [ Model(**model) for model in self.models ] self.loras = [ LoRA(**lora) for lora in self.loras ] if not self.models: self.models = [ Model() ] for model in self.models: if not isinstance( model.experimental, dict ): continue model.experimental = ModelExperimentalSettings(**model.experimental) self.hyperparameters = Hyperparameters(**self.hyperparameters) self.evaluation = Evaluation(**self.evaluation) self.trainer = Trainer(**self.trainer) if not isinstance(self.trainer.deepspeed, type): self.trainer.deepspeed = DeepSpeed(**self.trainer.deepspeed) self.inference = Inference(**self.inference) if self.bitsandbytes is not None: self.optimizations = Optimizations(**self.bitsandbytes) else: self.optimizations = Optimizations(**self.optimizations) if self.hyperparameters.scheduler_type and not self.hyperparameters.scheduler: self.hyperparameters.scheduler = self.hyperparameters.scheduler_type self.hyperparameters.scheduler_type = "" # do not combine the two if self.hyperparameters.scheduler == "schedulefree" and self.optimizations.dadaptation: self.hyperparameters.scheduler = "" if self.hyperparameters.scheduler == "": self.hyperparameters.torch_scheduler = True if self.dataset.prompt_duration != 0: self.dataset.prompt_duration_range = [self.dataset.prompt_duration, self.dataset.prompt_duration] if self.trainer.backend == "local" and self.distributed: self.trainer.ddp = True if self.inference.audio_backend != "" and self.audio_backend == "": self.audio_backend = self.inference.audio_backend if self.trainer.activation_checkpointing is not None: self.trainer.gradient_checkpointing = self.trainer.activation_checkpointing if not training: self.dataset.use_hdf5 = False # load our HDF5 file if requested here if self.dataset.use_hdf5: self.load_hdf5() # load tokenizer if cfg.tokenizer == "naive": cfg.tokenizer = NaiveTokenizer() else: try: from transformers import PreTrainedTokenizerFast tokenizer_path = cfg.rel_path / cfg.tokenizer_path if not tokenizer_path.exists(): tokenizer_path = Path("./data/") / cfg.tokenizer_path cfg.tokenizer = PreTrainedTokenizerFast(tokenizer_file=str(tokenizer_path)) except Exception as e: cfg.tokenizer = NaiveTokenizer() print("Error while parsing tokenizer:", e) pass # Preserves the old behavior class NaiveTokenizer: def get_vocab( self ): """ if cfg.dataset.use_hdf5 and 'symmap' in cfg.hdf5: return json.loads( cfg.hdf5['symmap'].asstr()[()] ) """ return {'': 1, '': 2, ' ': 3, '.': 4, ',': 5, '!': 6, '?': 7, 'p': 7, 'iː': 8, 'ɚ': 9, 'ˌ': 10, 'dˌ': 11, 'mˌ': 12, 'd': 13, 'ɹ': 14, 'tˈ': 15, 'pˌ': 16, 'uː': 17, 'l': 18, 'æ': 19, 'ɛ': 20, 'ɪ': 21, 'j': 22, 'ʊ': 23, 't': 24, 'n': 25, 'v': 26, 'a': 27, 'o': 28, 'ŋ': 29, 'w': 30, 'ʌ': 31, 'hˈ': 32, 'ɡˈ': 33, 'ə': 34, 'θˈ': 35, 'dˈ': 36, 'wˌ': 37, 'h': 38, 'z': 39, 'k': 40, 'ð': 41, 'ɡˌ': 42, 'ˈ': 43, 'fˈ': 44, 'i': 45, 's': 46, 'ʃ': 47, 'wˈ': 48, 'ðˈ': 49, 'ɹˈ': 50, 'lˈ': 51, 'ɡ': 52, 'oː': 53, 'mˈ': 54, 'e': 55, 'ɑː': 56, 'nˈ': 57, 'm': 58, 'θˌ': 59, 'sˈ': 60, 'f': 61, 'ɔː': 62, 'hˌ': 63, 'b': 64, 'jˈ': 65, 'ɐ': 66, 'ʒˈ': 67, 'θ': 68, 'bˈ': 69, 'ɾ': 70, 'ɜː': 71, 'ʌˈ': 72, 'ʃˌ': 73, 'bˌ': 74, 'kˈ': 75, 'ɔ': 76, 'zˈ': 77, 'ᵻ': 78, 'kˌ': 79, 'vˈ': 80, 'fˌ': 81, 'ʒ': 82, 'ʃˈ': 83, 'ɹˌ': 84, 'tˌ': 85, 'pˈ': 86, 'ðˌ': 87, 'sˌ': 88, 'nˌ': 89, 'lˌ': 90, '̩': 91, 'ʔ': 92, 'vˌ': 93, 'ɪˈ': 94, '"': 95, 'ɪˌ': 96, 'ʒˌ': 97, 'uːˌ': 98, 'ʊˈ': 99, 'jˌ': 100, 'uːˈ': 101, 'iːˈ': 102, 'zˌ': 103, '.ˈ': 104, '…': 105, 'ŋˌ': 106, 'ɐˌ': 107, '—ˈ': 108, 'iˌ': 109, 'iːˌ': 110, 'ɛː': 111, ')': 112, ')ˈ': 113, '(': 114, 'u': 115, '-': 116, 'ɖˈ': 117, 'iˈ': 118, 'ʰˈ': 119, 'ɟˈ': 120, '̃': 121, 'eː': 122, 'ɾˈ': 123, 'r': 124, 'ʰ': 125, '-ˌ': 126, 'ɫ': 127, 'q': 128, '—': 129, 'ʊˌ': 130, 'aː': 131, 'cˈ': 132, '…ˈ': 133, 'c': 134, 'ɳ': 135, 'ɐˈ': 136, 'x': 137, 'ʔˌ': 138, '.ˌ': 139, 'ɑ': 140, '?ˈ': 141, '̩ˈ': 142, '"ˈ': 143, ',ˈ': 144, 'ŋˈ': 145, 'əˌ': 146, '!ˈ': 147, '"ˌ': 148, '?ˌ': 149, ',ˌ': 150, '—ˌ': 151, '̩ˌ': 152, 'əˈ': 153, '!ˌ': 154, 'ɬ': 155, 'ʲ': 156, '¡': 157, 'ɯ': 158, 'qˌ': 159, 'ʑ': 160, 'ʑˈ': 161, '¿': 162, 'ɑːˈ': 163, 'iːː': 164, 'ɛˈ': 165, '¡ˈ': 166, 'æˈ': 167, 'ç': 168, 'ɾˌ': 169, 'ᵻˈ': 170, 'xˈ': 171, 'ɔːˈ': 172, ';': 173, 'ɬˌ': 174, ':': 175, 'ʔˈ': 176, 'ɑːˌ': 177, 'ɬˈ': 178, '”': 179, '“': 180, '“ˈ': 181, '“ˌ': 182, ';ˈ': 183, ';ˌ': 184, ':ˈ': 185, '1': 186, 'rˈ': 187, 'qˈ': 188, 'ᵻˌ': 189, 'ä': 190, '̞ˌ': 191, '̞': 192, 'ũˌ': 193, 'ʑˌ': 194, 'ᵝ': 195, 'ɽ': 196, 'ʲˌ': 197, 'ᵝˌ': 198, 'ũ': 199, 'ũˈ': 200, 'äˌ': 201, 'ɕ': 202, 'ɕˌ': 203, 'ɽˌ': 204, 'çˌ': 205, '…ˌ': 206, '̞ˈ': 207, 'äˈ': 208, 'ɽˈ': 209, 'ɸˌ': 210, 'ɴ': 211, 'ɸˈ': 212, 'ɕˈ': 213, 'ɸ': 214, 'ᵝˈ': 215, 'ʲˈ': 216, 'ĩ': 217, 'çˈ': 218, 'ĩˌ': 219, 'oˌ': 220, 'eˈ': 221, 'ʍ': 222, 'eˌ': 223, 'uˌ': 224, 'ʍˌ': 225, 'uˈ': 226, 'oˈ': 227, 'aˈ': 228} @cached_property def _bos_token( self ): return self.get_vocab()[""] @cached_property def _eos_token( self ): return self.get_vocab()[""] def encode( self, s ): symmap = self.get_vocab() phones = " ".join( list(s) ) # do merge for merge in [ "\u02C8", "\u02CC", "\u02D0" ]: phones = phones.replace( f' {merge}', merge ) phones = phones.split(" ") # cleanup phones = [ p for i, p in enumerate(phones) if p not in [" "] or ( p in [" "] and p != phones[i-1] ) ] # add bos / eos phones = [""] + [ " " if not p else p for p in phones ] + [""] # tokenize return [*map(symmap.get, phones)] cfg = Config.from_cli() # some safety for remapping deprecated formats and re-coercing uninitialized properties into actual types try: cfg.format() except Exception as e: print("Error while parsing config YAML:") raise e # throw an error because I'm tired of silent errors messing things up for me if __name__ == "__main__": print(cfg)