import math import torch import torch.nn.functional as F import traceback from typing import Literal, overload from functools import partial from einops import rearrange from torch import Tensor, einsum, nn from torch.distributions import Categorical from torch.nn.utils.rnn import pad_sequence from torch.utils.checkpoint import checkpoint from torchmetrics.classification import BinaryAccuracy, MulticlassAccuracy, MulticlassPrecision from .retnet import RetNetDecoder, RetNetConfig from .transformer import SinusoidalEmbedding, Block as TransformerBlock try: from ..ext.interleaver import ( CodebooksPatternProvider, DelayedPatternProvider, MusicLMPattern, ParallelPatternProvider, UnrolledPatternProvider, VALLEPattern, ) except Exception as e: pass from ..config import cfg def _get_pattern_provider( name ): return { 'parallel': ParallelPatternProvider, 'delay': DelayedPatternProvider, 'unroll': UnrolledPatternProvider, 'valle': VALLEPattern, 'musiclm': MusicLMPattern, }[name] def _create_mask(l, device): """1 is valid region and 0 is invalid.""" seq = torch.arange(max(l), device=device).unsqueeze(0) # (1 t) stop = torch.tensor(l, device=device).unsqueeze(1) # (b 1) return (seq < stop).float() # (b t) def _join(x: tuple[Tensor], sep: Tensor): """ Args: x: (k t d) sep: (d) """ ret = x[0] for i in range(1, len(x)): ret = torch.cat((ret, sep[None], x[i]), dim=0) return ret def list_to_tensor(x_list: list[Tensor], pattern="t b c -> b t c"): """ Args: x_list: [(t d)] Returns: x: (? ? ?) m: (? ? ?), same as x """ l = list(map(len, x_list)) x = rearrange(pad_sequence(x_list), pattern) m = _create_mask(l, x_list[0].device) m = m.t().unsqueeze(-1) # (t b 1) m = rearrange(m, pattern) m = m.to(x) return x, m class Embedding(nn.Embedding): def forward(self, x_list: list[Tensor]) -> list[Tensor]: if len(x_list) == 0: return [] return super().forward(torch.cat(x_list)).split([*map(len, x_list)]) class MultiEmbedding(nn.Embedding): """ This embedding sums embeddings on different levels. """ def __init__(self, max_n_levels, n_tokens, token_dim): super().__init__(max_n_levels, token_dim) self.max_n_levels = max_n_levels self.n_tokens = n_tokens self.weight = nn.Parameter(torch.randn(max_n_levels, n_tokens, token_dim)) def forward(self, x_list: list[Tensor]) -> list[Tensor]: if len(x_list) == 0: return [] w = self.weight padded_x_list = [] for xi in x_list: xi = F.one_hot(xi.to(torch.int64), num_classes=self.n_tokens) # t l' k xi = F.pad(xi, (0, 0, 0, w.shape[0] - xi.shape[1])) # t l k padded_x_list.append(xi.to(w)) x = torch.cat(padded_x_list) # n l k x = einsum("l k d, n l k -> n d", w, x) x_list = x.split([*map(len, x_list)]) return x_list class Base(nn.Module): @property def causal(self): return True @property def use_stop_token(self): return True @property def norm_type(self): return "ln" @property def arch_type(self) -> str: return "retnet" @property def n_prom_levels(self) -> int: return 4 @property def n_resp_levels(self) -> int: return 4 @property def n_max_levels(self) -> int: return 4 @property def n_tasks(self) -> int: return 16 @property def resp_loss_only(self) -> bool: return False @property def recurrent_chunk_size(self) -> int: return 0 @property def interleave_pattern(self) -> str | None: return "musiclm" @property def stop_token(self): return self.n_tokens + 0 @property def interleaved_token(self): return self.n_tokens + 1 @property def ignore_index(self): return -100 # self.interleaved_token def _prune(self, l: Tensor): indices = (l == self.stop_token).nonzero() if len(indices) == 0: return l return l[: indices.min().item()] @staticmethod def _unsqueeze_list(x_list, axis=-1): return [x.unsqueeze(dim=axis) for x in x_list] @staticmethod def _samplewise_merge_tensors(*l, sep: Tensor | None): if sep is None: cat = torch.cat else: cat = partial(_join, sep=sep) return [*map(cat, zip(*l))] def _interleave( self, codes ): if not self.interleave_pattern: return codes return codes.flatten() """ pattern_provider = _get_pattern_provider( self.interleave_pattern )( self.n_resp_levels ) pattern = pattern_provider.get_pattern( codes.shape[0] ) res, _, _ = pattern.build_pattern_sequence( codes.t()[None, :, :], self.interleaved_token, keep_only_valid_steps=True ) return res[0].t().flatten() """ def _deinterleave( self, codes ): if not self.interleave_pattern: return codes return torch.unflatten( codes[:codes.shape[0] // self.n_resp_levels * self.n_resp_levels], 0, ( codes.shape[0] // self.n_resp_levels, self.n_resp_levels ) ) """ if codes.dim() == 1: codes = torch.unflatten( codes[:codes.shape[0] // self.n_resp_levels * self.n_resp_levels], 0, ( codes.shape[0] // self.n_resp_levels, self.n_resp_levels ) ) pattern_provider = _get_pattern_provider( self.interleave_pattern )( self.n_resp_levels ) pattern = pattern_provider.get_pattern( codes.shape[0] ) res, _, _ = pattern.revert_pattern_sequence( codes, special_token=self.interleaved_token) return res[0].t() """ def __init__( self, n_tokens: int = 1024, d_model: int = 512, n_heads: int = 8, n_layers: int = 12, p_dropout: float = 0.1, config: dict | None = None ): super().__init__() self._cfg = config self.n_tokens = n_tokens self.d_model = d_model self.n_heads = n_heads self.n_layers = n_layers # + tasks for each token they represent in the prom n_prom_tokens = n_tokens + (self.n_tasks - 1) + (1 if self.interleave_pattern else 0) # - 1 because tts is an inherent task # +1 to include the stop token + 1 to include interleave token n_resp_tokens = n_tokens + (1 if self.use_stop_token else 0) + (1 if self.interleave_pattern else 0) # AR requires a stop token to... know when to stop self.text_emb = Embedding(n_tokens, d_model) self.proms_emb = MultiEmbedding(self.n_prom_levels, n_prom_tokens, d_model) self.resps_emb = MultiEmbedding(1, n_resp_tokens, d_model) self.sep = nn.Parameter(torch.randn(d_model)) if self.arch_type == "transformer": self.sin_emb = SinusoidalEmbedding(d_model) self.blocks = nn.ModuleList([TransformerBlock( d_model=d_model, n_heads=n_heads, p_dropout=p_dropout, causal=self.causal, norm_type=self.norm_type, n_levels=1, ) for _ in range(n_layers) ]) elif self.arch_type == "retnet": self.retnet = RetNetDecoder(RetNetConfig( vocab_size=n_tokens, decoder_embed_dim=d_model, decoder_retention_heads=n_heads, decoder_ffn_embed_dim=d_model * 4, decoder_layers=n_layers, dropout=p_dropout, checkpoint_activations=True, chunkwise_recurrent=self.causal and self.recurrent_chunk_size > 0, recurrent_chunkwise_size=self.recurrent_chunk_size if self.causal else 0, no_output_layer=True, decoder_normalize_before=True, )) # I imagine because each step returns `resp_level`s tokens at once, so we need to have a classifier for each level #self.classifier = nn.ModuleList([ nn.Linear(d_model, n_resp_tokens) for _ in range(self.n_resp_levels) ]) if self.interleave_pattern else nn.Linear(d_model, n_resp_tokens) self.classifier = nn.Linear(d_model, n_resp_tokens) self.accuracy_metric = MulticlassAccuracy( n_resp_tokens, top_k=10, average="micro", multidim_average="global", ignore_index=self.ignore_index, ) self.precision_metric = MulticlassPrecision( n_resp_tokens, top_k=10, average="micro", multidim_average="global", ignore_index=self.ignore_index, ) @overload def forward( self, text_list: list[Tensor], proms_list: list[Tensor], resps_list: list[Tensor], targ_list: list[Tensor] | None = None, quant_levels: Tensor | None = None, shift_targ_list: bool = False, return_all: Literal[False] = False, return_all_resp: Literal[False] = False, sampling_temperature: float = 1.0, ) -> Tensor: ... @overload def forward( self, text_list: list[Tensor], proms_list: list[Tensor], resps_list: list[Tensor], targ_list: list[Tensor] | None = None, quant_levels: Tensor | None = None, shift_targ_list: bool = False, return_all: Literal[True] = True, return_all_resp: Literal[True] = True, sampling_temperature: float = 1.0, ) -> list[Tensor]: ... def _forward( self, text_list: list[Tensor], proms_list: list[Tensor], resps_list: list[Tensor], targ_list: list[Tensor] | None = None, quant_levels: Tensor | None = None, shift_targ_list: bool = False, return_all: bool = False, return_all_resp: bool = False, sampling_temperature: float = 1.0, state: dict | None = None, ): """ Args: text_list: [t] * b proms_list: [t' l] * b, l quantization levels. resps_list: [t'' l] * b, l quantization levels. targ_list: [t''] * b, one quantization level only; when given, loss will be computed quant_levels: specify which quant_levels to feed forward, used in NAR mode. shift_targ_list: whether to shift target list when computing loss. True if AR. return_all_resp: True if NAR. sampling_temperature: a lower temperature makes the result more robust but less diverse. Returns: y: sampled tokens """ batch_size = len(text_list) x_list = self._samplewise_merge_tensors( self.text_emb(text_list), self.proms_emb(proms_list), self.resps_emb(resps_list), sep=self.sep, ) x, m = list_to_tensor(x_list) device = x.device if state is not None: # prefill prefill_size = x.shape[1] # run the initial prompt to fill the KV cache if len(state) == 0: for n in range(prefill_size): xi = x[:, n, :].unsqueeze(1) self.retnet(xi, incremental_state=state, token_embeddings=xi, features_only=True) # grab last token(s) x = x[:, -1, :].unsqueeze(1) if self.arch_type == "transformer": x = self.sin_emb.add_pe(x) for block in self.blocks: x = block(x, m, quant_levels) elif self.arch_type == "retnet": # to-do: actually make this work and verify it works with recurrent_forward / chunkwise_forward x, _ = self.retnet(x, incremental_state=state, token_embeddings=x, features_only=True) x = self.classifier(x) * m # Remove padding h_list = [hi[:li] for hi, li in zip(x, map(len, x_list))] if True: logits = [hi[:] for hi, li in zip(h_list, map(len, resps_list))] ret = [ Categorical(logits=hi / sampling_temperature).sample() for hi in logits ] print( [ r for r in ret ] ) # compute loss if the target is given if targ_list is not None: if any([l == 0 for l in map(len, targ_list)]): raise ValueError("Cannot compute loss given empty targ_list.") ignore_sep = torch.tensor(self.ignore_index, device=device) # ignore the prompt when computing loss prom_list = [ torch.full_like(t[..., 0], self.ignore_index) for t in proms_list ] # remake input with ignored input prompt text_prom_list = self._samplewise_merge_tensors( text_list, prom_list, sep=ignore_sep ) for i in range(len(text_prom_list)): # ignore computing loss against text/prompt portion of input # the NAR doesn't need to compute the loss for it if self.resp_loss_only: text_prom_list[i][:] = self.ignore_index # roll the text/prompt for loss computing # the AR benefits from this, for some reason I'll figure out later else: text_prom_list[i] = text_prom_list[i].roll(-1, dims=0) text_prom_list[i][-1] = self.ignore_index # for the AR, roll by one and mark the ending with a stop token # this coerces the model into properly inferencing causally # why we don't just append a stop token in the dataloader, who knows if shift_targ_list: targ_list = [*targ_list] for i in range(len(targ_list)): targ_list[i] = targ_list[i].roll(-1, dims=0) targ_list[i][-1] = self.stop_token # create the new target sequence to compute the loss against y_list = self._samplewise_merge_tensors( text_prom_list, targ_list, sep=ignore_sep ) self.loss = dict( nll=F.cross_entropy( torch.cat(h_list), # input / predicted logits torch.cat(y_list), # target / ground truth ignore_index=self.ignore_index, ) ) self.stats = dict( acc = self.accuracy_metric( torch.cat(h_list), torch.cat(y_list) ), precision = self.precision_metric( torch.cat(h_list), torch.cat(y_list) ), ) # return the entire generated token string if return_all: logits = [hi[:] for hi, li in zip(h_list, map(len, resps_list))] # return the entire generated response elif return_all_resp: logits = [hi[-li:] for hi, li in zip(h_list, map(len, resps_list))] # return the last chunkwise piece elif self.causal and self.recurrent_chunk_size > 0: logits = [hi[-self.recurrent_chunk_size:] for hi, li in zip(h_list, map(len, resps_list))] # return just the last code else: logits = [ hi[-1:] for hi in h_list ] return [ Categorical(logits=hi / sampling_temperature).sample() for hi in logits ] def forward( self, text_list: list[Tensor], proms_list: list[Tensor], resps_list: list[Tensor] | None = None, max_steps: int = 1000, sampling_temperature: float = 1.0, ): if resps_list is not None: resps_list = [self._interleave(r) for r in resps_list] # guarantees we only have the first levels return self._forward( text_list=text_list, proms_list=proms_list, resps_list=self._unsqueeze_list(resps_list), targ_list=resps_list, quant_levels=None, shift_targ_list=True, return_all_resp=False, ) device = text_list[0].device batch_size = len(text_list) resps_list: list[Tensor] = [ torch.zeros(0, device=device).to(torch.int16) for _ in text_list ] stopped = torch.zeros(batch_size, device=device).bool() state = {} if cfg.inference.recurrent_forward else None for n in range(max_steps // max(1, self.recurrent_chunk_size)): # get next in sequence r = self._forward( text_list, proms_list, self._unsqueeze_list(resps_list), sampling_temperature=sampling_temperature, state=state ) # append tokens for i, ri in enumerate(r): if self.stop_token in ri: stopped[i] = True resps_list[i] = torch.cat([resps_list[i], ri]) # stop token found stopped |= r == self.stop_token if stopped.all().item(): break pruned = [self._prune(r) for r in resps_list] print( [ r for r in pruned ] ) deinterleaved = [ self._deinterleave(r) for r in pruned ] print( [ r for r in deinterleaved ] ) return deinterleaved def example_usage(): from ..config import cfg cfg.trainer.backend = "local" cfg.trainer.check_for_oom = False from functools import partial from einops import repeat from ..emb.qnt import decode_to_file from ..engines import Engine, Engines from tqdm import tqdm, trange device = "cuda" x8 = partial(repeat, pattern="t -> t l", l=cfg.models.prom_levels) symmap = {'': 1, '': 2, ' ': 3, '.': 4, ',': 5, '!': 6, '?': 7, 'p': 7, 'iː': 8, 'ɚ': 9, 'ˌ': 10, 'dˌ': 11, 'mˌ': 12, 'd': 13, 'ɹ': 14, 'tˈ': 15, 'pˌ': 16, 'uː': 17, 'l': 18, 'æ': 19, 'ɛ': 20, 'ɪ': 21, 'j': 22, 'ʊ': 23, 't': 24, 'n': 25, 'v': 26, 'a': 27, 'o': 28, 'ŋ': 29, 'w': 30, 'ʌ': 31, 'hˈ': 32, 'ɡˈ': 33, 'ə': 34, 'θˈ': 35, 'dˈ': 36, 'wˌ': 37, 'h': 38, 'z': 39, 'k': 40, 'ð': 41, 'ɡˌ': 42, 'ˈ': 43, 'fˈ': 44, 'i': 45, 's': 46, 'ʃ': 47, 'wˈ': 48, 'ðˈ': 49, 'ɹˈ': 50, 'lˈ': 51, 'ɡ': 52, 'oː': 53, 'mˈ': 54, 'e': 55, 'ɑː': 56, 'nˈ': 57, 'm': 58, 'θˌ': 59, 'sˈ': 60, 'f': 61, 'ɔː': 62, 'hˌ': 63, 'b': 64, 'jˈ': 65, 'ɐ': 66, 'ʒˈ': 67, 'θ': 68, 'bˈ': 69, 'ɾ': 70, 'ɜː': 71, 'ʌˈ': 72, 'ʃˌ': 73, 'bˌ': 74, 'kˈ': 75, 'ɔ': 76, 'zˈ': 77, 'ᵻ': 78, 'kˌ': 79, 'vˈ': 80, 'fˌ': 81, 'ʒ': 82, 'ʃˈ': 83, 'ɹˌ': 84, 'tˌ': 85, 'pˈ': 86, 'ðˌ': 87, 'sˌ': 88, 'nˌ': 89, 'lˌ': 90, '̩': 91, 'ʔ': 92, 'vˌ': 93, 'ɪˈ': 94, '"': 95, 'ɪˌ': 96, 'ʒˌ': 97, 'uːˌ': 98, 'ʊˈ': 99, 'jˌ': 100, 'uːˈ': 101, 'iːˈ': 102, 'zˌ': 103, '.ˈ': 104, '…': 105, 'ŋˌ': 106, 'ɐˌ': 107, '—ˈ': 108, 'iˌ': 109, 'iːˌ': 110, 'ɛː': 111, ')': 112, ')ˈ': 113, '(': 114, 'u': 115, '-': 116, 'ɖˈ': 117, 'iˈ': 118, 'ʰˈ': 119, 'ɟˈ': 120, '̃': 121, 'eː': 122, 'ɾˈ': 123, 'r': 124, 'ʰ': 125, '-ˌ': 126, 'ɫ': 127, 'q': 128, '—': 129, 'ʊˌ': 130, 'aː': 131, 'cˈ': 132, '…ˈ': 133, 'c': 134, 'ɳ': 135, 'ɐˈ': 136, 'x': 137, 'ʔˌ': 138, '.ˌ': 139, 'ɑ': 140, '?ˈ': 141, '̩ˈ': 142, '"ˈ': 143, ',ˈ': 144, 'ŋˈ': 145, 'əˌ': 146, '!ˈ': 147, '"ˌ': 148, '?ˌ': 149, ',ˌ': 150, '—ˌ': 151, '̩ˌ': 152, 'əˈ': 153, '!ˌ': 154, 'ɬ': 155, 'ʲ': 156, '¡': 157, 'ɯ': 158, 'qˌ': 159, 'ʑ': 160, 'ʑˈ': 161, '¿': 162, 'ɑːˈ': 163, 'iːː': 164, 'ɛˈ': 165, '¡ˈ': 166, 'æˈ': 167, 'ç': 168, 'ɾˌ': 169, 'ᵻˈ': 170, 'xˈ': 171, 'ɔːˈ': 172, ';': 173, 'ɬˌ': 174, ':': 175, 'ʔˈ': 176, 'ɑːˌ': 177, 'ɬˈ': 178} def tokenize(content, lang_marker="en"): split = content.split(" ") phones = [f""] + [ " " if not p else p for p in split ] + [f""] return torch.tensor([*map(symmap.get, phones)]).to() kwargs = { 'n_tokens': 1024, 'd_model': 1024, 'n_heads': 16, 'n_layers': 18, } models = { "ar": Base(**kwargs).to(device) } for name, model in models.items(): print(f"{name} parameter count: {sum(p.numel() for p in model.parameters() if p.requires_grad)}") engines = Engines({ name: Engine(model=model, optimizer=torch.optim.AdamW(model.parameters(), lr=1e-4)) for name, model in models.items() }) train = True qnt = torch.load("data/qnt.pt")[0].t()[:, :cfg.models.prom_levels].to(device) text_list = [ tokenize("ˈ a ɪ w ɪ l nˌ ɑː t ˈ æ s k ɐ sˈ ɛ k ə n d tˈ a ɪ m").to(device), #tokenize("ˌ ɔ n ɡˌ o ʊ ɪ ŋ hˈ o ʊ m ð ə tˈ uː f ɹˈ ɛ n d z fˈ a ʊ n d ɐ lˈ ɛ ɾ ɚ f ɹ ʌ m ˈ æ θ o ʊ z , hˌ uː d ɪ zˈ a ɪ ɚ d ðˌ ɛ m t ə mˈ iː t hˌ ɪ m æ t ð ə ɡ ɹˈ æ n d t ʃˈ ɑː ɹ l ɪ mˌ æ ɡ n i ɔ n ð ə fˈ ɑː l o ʊ ɪ ŋ dˈ e ɪ .").to(device), ] proms_list = [ qnt.to(device), ] resps_list = [ qnt.to(device), ] def sample( filename, steps=450 * 4 ): AR = None engines.eval() for name, engine in engines.items(): if name[:2] == "ar": AR = engine resps_list = AR(text_list, proms_list, max_steps=steps, sampling_temperature=1.0) decode_to_file(resps_list[0].cpu(), f"./data/{filename}.wav", device="cpu") if train: sample("init", 15) engines.train() t = trange(100) for i in t: stats = {"step": i} """ for name, engine in engines.items(): stats |= engine.traverse(text_list=text_list, proms_list=proms_list, resps_list=resps_list) """ stats = engines.step({"text_list": text_list, "proms_list": proms_list, "resps_list": resps_list}) tqdm.write(f"{stats}") else: for name, engine in engines.items(): engine.module.load_state_dict(torch.load(f"./data/{name}.pth")) sample("final") if __name__ == "__main__": example_usage()