dataset: training: [] validation: [] noise: [] speaker_name_getter: "lambda p: f'{p.parts[-3]}_{p.parts[-2]}'" use_hdf5: True use_metadata: True hdf5_flag: r validate: True workers: 2 cache: True phones_range: [4, 512] duration_range: [1.0, 32.0] random_utterance: 1.0 max_prompts: 3 prompt_duration: 6.0 sample_type: speaker tasks_list: [ "tts" ] # , [ "tts", "tts-c", "ns", "sr", "tse", "cse", "nse", "tts"] models: _prom_levels: 8 _max_levels: 8 _models: - name: "ar+nar" size: "full" resp_levels: 8 prom_levels: 8 tasks: 8 arch_type: "retnet" training: True version: 3 hyperparameters: batch_size: 8 gradient_accumulation_steps: 32 gradient_clipping: 100 optimizer: Prodigy torch_optimizer: True learning_rate: 0.0625 scheduler_type: "" #scheduler_type: OneCycle #scheduler_params: # cycle_first_step_size: 10_000 # cycle_first_stair_count: 10_000 # cycle_second_step_size: 15_000 # cycle_second_stair_count: 15_000 # decay_step_size: 5_000 # cycle_min_lr: 2.5e-4 # 1.0e-5 # cycle_max_lr: 2.5e-4 # 1.0e-4 # decay_lr_rate: 0.0 # cycle_min_mom: 0.90 # cycle_max_mom: 0.99 # decay_mom_rate: 0.0 evaluation: batch_size: 16 frequency: 250 size: 16 steps: 450 ar_temperature: 0.95 nar_temperature: 0.25 load_disabled_engines: True trainer: iterations: 1_000_000 save_tag: step save_on_oom: True save_on_quit: True save_frequency: 100 export_on_save: True keep_last_checkpoints: 4 aggressive_optimizations: False load_disabled_engines: False #load_state_dict: True #strict_loading: False #load_tag: "9500" #load_states: False #restart_step_count: True gc_mode: None # "global_step" weight_dtype: bfloat16 amp: False backend: deepspeed deepspeed: zero_optimization_level: 0 use_compression_training: True activation_checkpointing: True inference: use_vocos: True normalize: False weight_dtype: bfloat16 amp: False bitsandbytes: enabled: False injects: True linear: True embedding: True