# todo: clean this mess up import copy import h5py import json import logging import numpy as np import os import random import torch from .config import cfg from .utils.sampler import Sampler from collections import defaultdict from functools import cache, cached_property from itertools import groupby, zip_longest from pathlib import Path from typing import Any from torch import Tensor from torch.utils.data import DataLoader, Dataset as _Dataset from torch.utils.data.distributed import DistributedSampler from tqdm.auto import tqdm # torch.multiprocessing.set_sharing_strategy("file_system") _logger = logging.getLogger(__name__) def get_phone_symmap(): if cfg.dataset.use_hdf5 and 'symmap' in cfg.hdf5: return json.loads( cfg.hdf5['symmap'].asstr()[()] ) symmap = {'': 1, '': 2, ' ': 3, '.': 4, ',': 5, '!': 6, '?': 7, 'p': 7, 'iː': 8, 'ɚ': 9, 'ˌ': 10, 'dˌ': 11, 'mˌ': 12, 'd': 13, 'ɹ': 14, 'tˈ': 15, 'pˌ': 16, 'uː': 17, 'l': 18, 'æ': 19, 'ɛ': 20, 'ɪ': 21, 'j': 22, 'ʊ': 23, 't': 24, 'n': 25, 'v': 26, 'a': 27, 'o': 28, 'ŋ': 29, 'w': 30, 'ʌ': 31, 'hˈ': 32, 'ɡˈ': 33, 'ə': 34, 'θˈ': 35, 'dˈ': 36, 'wˌ': 37, 'h': 38, 'z': 39, 'k': 40, 'ð': 41, 'ɡˌ': 42, 'ˈ': 43, 'fˈ': 44, 'i': 45, 's': 46, 'ʃ': 47, 'wˈ': 48, 'ðˈ': 49, 'ɹˈ': 50, 'lˈ': 51, 'ɡ': 52, 'oː': 53, 'mˈ': 54, 'e': 55, 'ɑː': 56, 'nˈ': 57, 'm': 58, 'θˌ': 59, 'sˈ': 60, 'f': 61, 'ɔː': 62, 'hˌ': 63, 'b': 64, 'jˈ': 65, 'ɐ': 66, 'ʒˈ': 67, 'θ': 68, 'bˈ': 69, 'ɾ': 70, 'ɜː': 71, 'ʌˈ': 72, 'ʃˌ': 73, 'bˌ': 74, 'kˈ': 75, 'ɔ': 76, 'zˈ': 77, 'ᵻ': 78, 'kˌ': 79, 'vˈ': 80, 'fˌ': 81, 'ʒ': 82, 'ʃˈ': 83, 'ɹˌ': 84, 'tˌ': 85, 'pˈ': 86, 'ðˌ': 87, 'sˌ': 88, 'nˌ': 89, 'lˌ': 90, '̩': 91, 'ʔ': 92, 'vˌ': 93, 'ɪˈ': 94, '"': 95, 'ɪˌ': 96, 'ʒˌ': 97, 'uːˌ': 98, 'ʊˈ': 99, 'jˌ': 100, 'uːˈ': 101, 'iːˈ': 102, 'zˌ': 103, '.ˈ': 104, '…': 105, 'ŋˌ': 106, 'ɐˌ': 107, '—ˈ': 108, 'iˌ': 109, 'iːˌ': 110, 'ɛː': 111, ')': 112, ')ˈ': 113, '(': 114, 'u': 115, '-': 116, 'ɖˈ': 117, 'iˈ': 118, 'ʰˈ': 119, 'ɟˈ': 120, '̃': 121, 'eː': 122, 'ɾˈ': 123, 'r': 124, 'ʰ': 125, '-ˌ': 126, 'ɫ': 127, 'q': 128, '—': 129, 'ʊˌ': 130, 'aː': 131, 'cˈ': 132, '…ˈ': 133, 'c': 134, 'ɳ': 135, 'ɐˈ': 136, 'x': 137, 'ʔˌ': 138, '.ˌ': 139, 'ɑ': 140, '?ˈ': 141, '̩ˈ': 142, '"ˈ': 143, ',ˈ': 144, 'ŋˈ': 145, 'əˌ': 146, '!ˈ': 147, '"ˌ': 148, '?ˌ': 149, ',ˌ': 150, '—ˌ': 151, '̩ˌ': 152, 'əˈ': 153, '!ˌ': 154, 'ɬ': 155, 'ʲ': 156, '¡': 157, 'ɯ': 158, 'qˌ': 159, 'ʑ': 160, 'ʑˈ': 161, '¿': 162, 'ɑːˈ': 163, 'iːː': 164, 'ɛˈ': 165, '¡ˈ': 166, 'æˈ': 167, 'ç': 168, 'ɾˌ': 169, 'ᵻˈ': 170, 'xˈ': 171, 'ɔːˈ': 172, ';': 173, 'ɬˌ': 174, ':': 175, 'ʔˈ': 176, 'ɑːˌ': 177, 'ɬˈ': 178} return symmap def _replace_file_extension(path, suffix): return (path.parent / path.name.split(".")[0]).with_suffix(suffix) def _get_hdf5_path(path): path = str(path) if path[:2] != "./": path = f'./{path}' return path.replace(cfg.cfg_path, "") def _get_quant_path(path): return _replace_file_extension(path, ".qnt.pt") def _get_phone_path(path): return _replace_file_extension(path, ".phn.txt") def _load_quants(path) -> Tensor: path = _get_quant_path(path) return torch.load(path)[0][:cfg.models.levels, :].t().to(torch.int16) @cache def _get_phones(path, lang_marker="en"): path = _get_phone_path(path) with open(path, "r", encoding="utf8") as f: content = f.read() split = content.split(" ") return [f""] + [ " " if not p else p for p in split ] + [f""] def _interleaved_reorder(l, fn): groups = defaultdict(list) for e in l: groups[fn(e)].append(e) groups = {k: groups[k] for k in sorted(groups)} for interleaved in zip_longest(*groups.values()): for value in interleaved: if value is not None: yield value @cache def _validate(path, min_phones, max_phones, min_duration, max_duration): if cfg.dataset.use_hdf5: key = _get_hdf5_path(path) if key not in cfg.hdf5: return False phones = cfg.hdf5[key].attrs['phonemes'] duration = cfg.hdf5[key].attrs['duration'] if phones < min_phones or phones > max_phones: return False if duration < min_duration or duration > max_duration: return False return True if not os.path.exists(_get_phone_path(path)) or not os.path.exists(_get_quant_path(path)): return False phones = _get_phones(path) unique_phones = list(set(phones)) if len(unique_phones) == 0: return False if len(unique_phones) == 1 and unique_phones[0] == " ": return False if len(phones) < min_phones or len(phones) > max_phones: return False return True class Dataset(_Dataset): def __init__( self, paths, phone_symmap=None, spkr_symmap=None, min_phones=cfg.dataset.phones_range[0], max_phones=cfg.dataset.phones_range[1], min_duration=cfg.dataset.duration_range[0], max_duration=cfg.dataset.duration_range[1], training=False, extra_paths_by_spkr_name: dict[str, list] = {}, sample_type=cfg.dataset.sample_type # path | speaker ): super().__init__() self._head = None self.min_phones = min_phones self.max_phones = max_phones self.min_duration = min_duration self.max_duration = max_duration self.sample_type = sample_type if cfg.dataset.validate: self.paths = [ path for path in paths if _validate(path, self.min_phones, self.max_phones, self.min_duration, self.max_duration) ] else: self.paths = paths self.spkr_symmap = spkr_symmap or self._get_spkr_symmap() self.phone_symmap = phone_symmap or self._get_phone_symmap() self.training = training # assert len(self.phone_symmap) < 256, "Unique token count should be [0,255] to fit within uint8" self.text_dtype = torch.uint8 if len(self.phone_symmap) < 256 else torch.int16 self.paths_by_spkr_name = self._get_paths_by_spkr_name(extra_paths_by_spkr_name) if cfg.dataset.validate: self.paths = [ p for p in self.paths if len(self.paths_by_spkr_name[cfg.get_spkr(p)]) > 1 ] if len(self.paths) == 0 and training: raise ValueError("No valid path is found for training.") self.duration = 0 self.durations = {} if cfg.dataset.use_hdf5: for path in self.paths: key = _get_hdf5_path(path) spkr_name = cfg.get_spkr(path) spkr_id = self.spkr_symmap[spkr_name] duration = cfg.hdf5[key].attrs['duration'] self.duration += duration if spkr_id not in self.durations: self.durations[spkr_id] = duration else: self.durations[spkr_id] += duration if training and not cfg.distributed and self.sample_type == "path": self.sampler = Sampler(self.paths, [cfg.get_spkr]) else: self.sampler = None def _get_paths_by_spkr_name(self, extra_paths_by_spkr_name: dict[str, list]): ret = defaultdict(list) for path in self.paths: ret[cfg.get_spkr(path)].append(path) for k, v in extra_paths_by_spkr_name.items(): ret[k].extend(v) return {**ret} @cached_property def phones(self): return sorted(set().union(*[_get_phones(path) for path in self.paths])) def _get_phone_symmap(self): return get_phone_symmap() @cached_property def spkrs(self): return sorted({cfg.get_spkr(path) for path in self.paths}) def _get_spkr_symmap(self): return {s: i for i, s in enumerate(self.spkrs)} def sample_prompts(self, spkr_name, ignore): prom_list = [] choices = set(self.paths_by_spkr_name[spkr_name]) - {ignore} choices = [*choices] # no other utterances, it'd make more sense to prune speakers with only one utterance in the validatoin step if len(choices) == 0: choices = [*set(self.paths_by_spkr_name[spkr_name])] """ raise ValueError( f"Failed to find another different utterance for {spkr_name}." ) """ # shuffle it up a bit offset = random.randint(-16, 16) trim_length = int(cfg.dataset.prompt_duration * 75) + offset def trim( qnt ): length = qnt.shape[0] start = int(length * random.random()) end = start + trim_length if end >= length: start = length - trim_length end = length return qnt[start:end] total_qnt_length = 0 for _ in range(cfg.dataset.max_prompts): path = random.choice(choices) if cfg.dataset.use_hdf5: key = _get_hdf5_path(path) #qnt = torch.from_numpy(cfg.hdf5[key]["audio"][:]).to(torch.int16) qnt = torch.from_numpy(cfg.hdf5[key]["audio"][:, :cfg.models.levels]).to(torch.int16) else: qnt = _load_quants(path) if cfg.dataset.prompt_duration > 0 and trim_length < qnt.shape[0]: qnt = trim(qnt) prom_list.append(qnt) total_qnt_length += qnt.shape[0] if total_qnt_length >= trim_length: break if random.random() > cfg.dataset.random_utterance: break prom = torch.cat(prom_list) if cfg.dataset.prompt_duration > 0 and trim_length < prom.shape[0]: prom = trim(prom) return prom @cached_property def tasks(self): return ["tts"] # "ns", "sr", "tse", "cse", "nse" def __getitem__(self, index): if hasattr(self, "sample_type") and self.sample_type == "speaker": spkr_name = self.spkrs[index] spkr_id = self.spkr_symmap[spkr_name] path = random.choice([*set(self.paths_by_spkr_name[spkr_name])]) else: if self.training and self.sampler is not None: path = self.sampler.sample() else: path = self.paths[index] spkr_name = cfg.get_spkr(path) spkr_id = self.spkr_symmap[spkr_name] if cfg.dataset.use_hdf5: key = _get_hdf5_path(path) text = torch.from_numpy(cfg.hdf5[key]["text"][:]).to(self.text_dtype) resps = torch.from_numpy(cfg.hdf5[key]["audio"][:, :cfg.models.levels]).to(torch.int16) else: text = torch.tensor([*map(self.phone_symmap.get, _get_phones(path))]).to(self.text_dtype) resps = _load_quants(path) task = random.choice(self.tasks) if task == "tts": # I could probably do some logic to directly use the resps, but I'm putting my faith in python aliasing proms = self.sample_prompts(spkr_name, ignore=path) if random.random() < cfg.dataset.random_utterance else resps return dict( index=index, path=path, spkr_name=spkr_name, spkr_id=spkr_id, task=task, text=text, proms=proms, resps=resps, ) def head_(self, n): self._head = n def training_(self, value): self.training = value def interleaved_reorder_(self, fn): self.paths = [*_interleaved_reorder(self.paths, fn)] def __len__(self): if hasattr(self, "sample_type") and self.sample_type == "speaker": return min(len(self.spkrs), self._head or len(self.spkrs)) return min(len(self.paths), self._head or len(self.paths)) def pin_memory(self): self.text = self.text.pin_memory() self.proms = self.proms.pin_memory() self.resps = self.resps.pin_memory() self.resp = self.resp.pin_memory() return self def collate_fn(samples: list[dict]): batch: dict[str, Any] = {k: [s[k] for s in samples] for k in samples[0]} return batch def _seed_worker(worker_id): worker_seed = torch.initial_seed() % 2**32 np.random.seed(worker_seed) random.seed(worker_seed) def _create_dataloader(dataset, training): sampler = None shuffle = True if cfg.distributed and training: sampler = DistributedSampler(dataset) shuffle = False return DataLoader( dataset=dataset, batch_size=cfg.hyperparameters.batch_size if training else cfg.evaluation.batch_size, shuffle=shuffle, drop_last=training, num_workers=cfg.dataset.workers, collate_fn=collate_fn, persistent_workers=True, pin_memory=False, # True, worker_init_fn=_seed_worker, sampler=sampler, ) def _load_dataset_paths(): hf = cfg.hdf5 paths = { "training": [], "validation": [], } datasets = { "training": [], "validation": [], } def get_paths( data_dir, type="training" ): key = f"/{type}{_get_hdf5_path(data_dir)}" if key not in cfg.hdf5: return paths[type].extend([ f"{key}/{child.attrs['id']}" for child in cfg.hdf5[key].values() ]) for data_dir in cfg.dataset.training: get_paths( data_dir, "training" ) for data_dir in cfg.dataset.validation: get_paths( data_dir, "validation" ) for _, type in enumerate(paths): dirs = paths[type] if len(dirs) == 0: continue dirs = [ Path(p) for p in dirs ] pairs = sorted([(cfg.get_spkr(p), p) for p in dirs]) for _, group in groupby(pairs, lambda pair: pair[0]): shuffled = sorted([p for _, p in group]) random.seed(0) random.shuffle(shuffled) datasets[type].extend(shuffled) return datasets["training"], datasets["validation"] # to-do: mirror the hdf5-based load function def _load_train_val_paths(): paths = [] train_paths = [] val_paths = [] for data_dir in cfg.dataset.training: paths.extend(data_dir.rglob("*.qnt.pt")) if len(paths) > 0: pairs = sorted([(cfg.get_spkr(p), p) for p in paths]) del paths for _, group in groupby(pairs, lambda pair: pair[0]): paths = sorted([p for _, p in group]) random.seed(0) random.shuffle(paths) train_paths.extend(paths) for data_dir in cfg.dataset.validation: paths.extend(data_dir.rglob("*.qnt.pt")) if len(paths) > 0: pairs = sorted([(cfg.get_spkr(p), p) for p in paths]) del paths for _, group in groupby(pairs, lambda pair: pair[0]): paths = sorted([p for _, p in group]) random.seed(0) random.shuffle(paths) val_paths.extend(paths) train_paths, val_paths = map(sorted, [train_paths, val_paths]) if len(train_paths) == 0: raise RuntimeError(f"Failed to find any .qnt.pt file in specified training dataset.") # to-do: allow setting aside a fixed portion of the training dataset for validation # something like the last X percent of each speaker is set aside if len(val_paths) == 0: val_paths = [ train_paths[0] ] return train_paths, val_paths @cfg.diskcache() def create_datasets(): train_paths, val_paths = _load_dataset_paths() if cfg.dataset.use_hdf5 else _load_train_val_paths() train_dataset = Dataset( train_paths, training=True, ) val_dataset = Dataset( val_paths, train_dataset.phone_symmap, #train_dataset.spkr_symmap, #extra_paths_by_spkr_name=train_dataset.paths_by_spkr_name, ) val_dataset.interleaved_reorder_(cfg.get_spkr) val_dataset.head_(cfg.evaluation.size) return train_dataset, val_dataset def create_train_val_dataloader(): train_dataset, val_dataset = create_datasets() train_dataset.sample_type = cfg.dataset.sample_type #"speaker" subtrain_dataset = copy.deepcopy(train_dataset) if subtrain_dataset.sample_type == "path": subtrain_dataset.head_(cfg.evaluation.size) subtrain_dataset.interleaved_reorder_(cfg.get_spkr) train_dl = _create_dataloader(train_dataset, training=True) val_dl = _create_dataloader(val_dataset, training=False) subtrain_dl = _create_dataloader(subtrain_dataset, training=False) _logger.info(str(train_dataset.phone_symmap)) _logger.info(str(train_dataset.spkr_symmap)) _logger.info(f"#samples (train): {len(train_dataset)}.") _logger.info(f"#samples (val): {len(val_dataset)}.") _logger.info(f"#samples (subtrain): {len(subtrain_dataset)}.") """ _logger.info(f"#durations (train): {str(train_dataset.durations)}.") _logger.info(f"#durations (val): {str(val_dataset.durations)}.") _logger.info(f"#durations (subtrain): {str(subtrain_dataset.durations)}.") """ _logger.info(f"#duration (train): {str(train_dataset.duration)}.") _logger.info(f"#duration (val): {str(val_dataset.duration)}.") _logger.info(f"#duration (subtrain): {str(subtrain_dataset.duration)}.") assert isinstance(subtrain_dl.dataset, Dataset) return train_dl, subtrain_dl, val_dl # parse yaml to create an hdf5 tile def create_dataset_hdf5(): symmap = get_phone_symmap() root = cfg.cfg_path hf = cfg.hdf5 def add( dir, type="training" ): dir = "./" + str(dir) name = dir.replace(root, "") print( str(dir), name ) if not os.path.isdir(f'{root}/{name}/'): return # tqdm.write(f'{root}/{name}') files = os.listdir(f'{root}/{name}/') # grab IDs for every file ids = { ".".join(file.split(".")[:-2]) for file in files } for id in tqdm(ids, desc=f"Processing {name}"): if not os.path.exists(f'{root}/{name}/{id}.qnt.pt') or not os.path.exists(f'{root}/{name}/{id}.phn.txt'): continue key = f'{type}/{name}/{id}' if key in hf: # print("Skipping existing entry:", key) continue group = hf.create_group(key) # audio qnt = torch.load(f'{root}/{name}/{id}.qnt.pt')[0].t() group.create_dataset('audio', data=qnt.numpy(), compression='lzf') # text with open(f'{root}/{name}/{id}.phn.txt', "r", encoding="utf8") as f: content = f.read() split = content.split(" ") phones = [f""] + [ " " if not p else p for p in split ] + [f""] for s in set(phones): if s not in symmap: symmap[s] = len(symmap.keys()) phn = [ symmap[s] for s in phones ] group.create_dataset('text', data=phn, compression='lzf', chunks=True) # metadata group.attrs['id'] = id group.attrs['type'] = type group.attrs['speaker'] = name group.attrs['duration'] = qnt.shape[0] / 75 group.attrs['phonemes'] = len(phn) # training for data_dir in tqdm(cfg.dataset.training, desc="Processing Training"): add( data_dir, type="training" ) # validation for data_dir in tqdm(cfg.dataset.validation, desc='Processing Validation'): add( data_dir, type="validation" ) # write symmap hf.create_dataset('symmap', data=json.dumps(symmap)) hf.close() if __name__ == "__main__": import argparse parser = argparse.ArgumentParser("Save trained model to path.") parser.add_argument("--create-hdf5", action="store_true") args = parser.parse_args() if args.create_hdf5: create_dataset_hdf5() train_dl, subtrain_dl, val_dl = create_train_val_dataloader() print("Training DL:", next(iter(train_dl))) print("Training DL:", next(iter(train_dl))) print("Evaluation DL:", next(iter(subtrain_dl))) print("Evaluation DL:", next(iter(subtrain_dl))) print("Validation DL:", next(iter(val_dl))) print("Validation DL:", next(iter(val_dl)))