# VALL'E An unofficial PyTorch implementation of [VALL-E](https://valle-demo.github.io/), based on the [EnCodec](https://github.com/facebookresearch/encodec) tokenizer. ## Requirements If your config YAML has the training backend set to [`deepspeed`](https://github.com/microsoft/DeepSpeed#requirements), you will need to have a GPU that DeepSpeed has developed and tested against, as well as a CUDA or ROCm compiler pre-installed to install this package. ## Install Simply run `pip install git+https://git.ecker.tech/mrq/vall-e`, or, you may clone by: `git clone --recurse-submodules https://git.ecker.tech/mrq/vall-e.git` I've tested this repo under Python versions `3.10.9` and `3.11.3`. ## Try Me To quickly try it out, you can choose between the following modes: * AR only: `python -m vall_e.models.ar yaml="./data/config.yaml"` * NAR only: `python -m vall_e.models.nar yaml="./data/config.yaml"` * AR+NAR: `python -m vall_e.models.base yaml="./data/config.yaml"` Each model file has a barebones trainer and inference routine. ## Pre-Trained Model My pre-trained weights can be acquired from [here](https://huggingface.co/ecker/vall-e). For example: ``` git lfs clone --exclude "*.h5" https://huggingface.co/ecker/vall-e ./data/ python -m vall_e "The birch canoe slid on the smooth planks." "./path/to/an/utterance.wav" --out-path="./output.wav" yaml="./data/config.yaml" ``` ## Train Training is very dependent on: * the quality of your dataset. * how much data you have. * the bandwidth you quantized your audio to. ### Notices #### Modifying `prom_levels`, `resp_levels`, Or `tasks` For A Model If you're wanting to increase the `prom_levels` for a given model, or increase the `tasks` levels a model accepts, you will need to export your weights and set `train.load_state_dict` to `True` in your configuration YAML. ### Pre-Processed Dataset > **Note** A pre-processed "libre" is being prepared. This contains only data from the LibriTTS and LibriLight datasets (and MUSAN for noise), and culled out any non-libre datasets. ### Leverage Your Own Dataset > **Note** It is highly recommended to utilize [mrq/ai-voice-cloning](https://git.ecker.tech/mrq/ai-voice-cloning) with `--tts-backend="vall-e"` to handle transcription and dataset preparations. 1. Put your data into a folder, e.g. `./data/custom`. Audio files should be named with the suffix `.wav` and text files with `.txt`. 2. Quantize the data: `python -m vall_e.emb.qnt ./data/custom` 3. Generate phonemes based on the text: `python -m vall_e.emb.g2p ./data/custom` 4. Customize your configuration and define the dataset by modifying `./data/config.yaml`. Refer to `./vall_e/config.py` for details. If you want to choose between different model presets, check `./vall_e/models/__init__.py`. If you're interested in creating an HDF5 copy of your dataset, simply invoke: `python -m vall_e.data --action='hdf5' yaml='./data/config.yaml'` 5. Train the AR and NAR models using the following scripts: `python -m vall_e.train yaml=./data/config.yaml` You may quit your training any time by just typing `quit` in your CLI. The latest checkpoint will be automatically saved. ### Dataset Formats Two dataset formats are supported: * the standard way: - data is stored under `${speaker}/${id}.phn.txt` and `${speaker}/${id}.qnt.pt` * using an HDF5 dataset: - you can convert from the standard way with the following command: `python3 -m vall_e.data yaml="./path/to/your/config.yaml"` - this will shove everything into a single HDF5 file and store some metadata alongside (for now, the symbol map generated, and text/audio lengths) - be sure to also define `use_hdf5` in your config YAML. ## Export Both trained models *can* be exported, but is only required if loading them on systems without DeepSpeed for inferencing (Windows systems). To export the models, run: `python -m vall_e.export yaml=./data/config.yaml`. This will export the latest checkpoints under `./data/ckpt/ar-retnet-2/fp32.pth` and `./data/ckpt/nar-retnet-2/fp32.pth` to be loaded on any system with PyTorch. ## Synthesis To synthesize speech, invoke either (if exported the models): `python -m vall_e --ar-ckpt ./models/ar.pt --nar-ckpt ./models/nar.pt` or `python -m vall_e yaml=` Some additional flags you can pass are: * `--max-ar-steps`: maximum steps for inferencing through the AR model. Each second is 75 steps. * `--ar-temp`: sampling temperature to use for the AR pass. During experimentation, `0.95` provides the most consistent output. * `--nar-temp`: sampling temperature to use for the NAR pass. During experimentation, `0.2` provides the most clean output. * `--device`: device to use (default: `cuda`, examples: `cuda:0`, `cuda:1`, `cpu`) ## To-Do * reduce load time for creating / preparing dataloaders. * train and release a model. * extend to multiple languages (VALL-E X) and ~~extend to~~ train SpeechX features. ## Notice - [EnCodec](https://github.com/facebookresearch/encodec) is licensed under CC-BY-NC 4.0. If you use the code to generate audio quantization or perform decoding, it is important to adhere to the terms of their license. Unless otherwise credited/noted, this repository is [licensed](LICENSE) under AGPLv3. ## Citations ```bibtex @article{wang2023neural, title={Neural Codec Language Models are Zero-Shot Text to Speech Synthesizers}, author={Wang, Chengyi and Chen, Sanyuan and Wu, Yu and Zhang, Ziqiang and Zhou, Long and Liu, Shujie and Chen, Zhuo and Liu, Yanqing and Wang, Huaming and Li, Jinyu and others}, journal={arXiv preprint arXiv:2301.02111}, year={2023} } ``` ```bibtex @article{defossez2022highfi, title={High Fidelity Neural Audio Compression}, author={Défossez, Alexandre and Copet, Jade and Synnaeve, Gabriel and Adi, Yossi}, journal={arXiv preprint arXiv:2210.13438}, year={2022} } ```