""" # Handles processing audio provided through --input-audio of adequately annotated transcriptions provided through --input-metadata (through transcribe.py) # Outputs NumPy objects containing quantized audio and adequate metadata for use of loading in the trainer through --output-dataset """ import os import json import argparse import torch import torchaudio import numpy as np import logging _logger = logging.getLogger(__name__) from tqdm.auto import tqdm from pathlib import Path import torchaudio.functional as F import torchaudio.transforms as T from ..config import cfg # need to validate if this is safe to import before modifying the config from .g2p import encode as phonemize from .qnt import encode as quantize, trim, convert_audio from ..webui import init_tts def load_audio( path ): waveform, sr = torchaudio.load( path ) # mix channels if waveform.shape[0] > 1: waveform = torch.mean(waveform, dim=0, keepdim=True) # resample waveform, sr = convert_audio(waveform, sr, cfg.sample_rate, 1), cfg.sample_rate return waveform, sr def process( input_speaker, yaml, text=False, audio_backend="encodec", device="cuda", dtype="float16", amp=False, verbose=False, ): cfg.set_audio_backend(audio_backend) artifact_extension = cfg.audio_backend_extension cfg.inference.weight_dtype = dtype # "bfloat16" cfg.inference.amp = amp # False # easy way to load the model and handle encoding audio tts = init_tts( yaml=yaml, restart=False, device=device, dtype=dtype ) queue = [] features = {} similarities = {} sorted_similarities = {} mfcc = T.MFCC(sample_rate=cfg.sample_rate) # compute features (embeddings if quantized already, MFCC features if raw audio) for filename in tqdm(os.listdir(f'./{input_speaker}/'), desc="Encoding...", disable=not verbose): extension = filename.split(".")[-1] if text: if extension not in artifact_extension: raise Exception("!") artifact = np.load(f'./{input_speaker}/{filename}', allow_pickle=True)[()] lang = artifact["metadata"]["language"] if "language" in artifact["metadata"]["language"] else "en" if "phonemes" in artifact["metadata"]: phn = artifact["metadata"]["phonemes"] elif "text" in artifact["metadata"]: txt = artifact["metadata"]["text"] phn = phonemize( txt, language=lang ) phn = phn.replace("(en)", "") if lang != "en": phn = phn.replace(f"({metadata['language']})", "") features[filename] = tts.text_embedding( phn ) else: # treat embeddings as features, if provided quantized audio if extension in artifact_extension: artifact = np.load(f'./{input_speaker}/{filename}', allow_pickle=True)[()] qnt = torch.from_numpy(artifact["codes"].astype(int))[0].t().to(dtype=torch.int16, device=device) qnt = trim( qnt, int( cfg.dataset.frames_per_second * 3 ) ) features[filename] = tts.audio_embedding( qnt ) # try and extract features from the raw audio itself else: # qnt = tts.encode_audio(f'./{input_speaker}/{filename}', trim_length=3.0).to(device) wav, sr = load_audio( f'./{input_speaker}/{filename}' ) features[filename] = mfcc(wav.to(device))[0].t() # calculate pairs, flattened because it makes tqdm nicer for filename_a, embedding_a in features.items(): for filename_b, embedding_b in features.items(): if filename_a == filename_b: continue key = f'{filename_a}:{filename_b}' if key in queue: continue queue.append(key) # compute similarities for every utternace for key in tqdm(queue, desc="Computing similarities", disable=not verbose): filename_a, filename_b = key.split(":") swapped_key = f'{filename_b}:{filename_a}' if swapped_key in similarities: similarities[key] = similarities[swapped_key] continue shortest = min( features[filename_a].shape[0], features[filename_b].shape[0] ) similarities[key] = torch.nn.functional.cosine_similarity(features[filename_a][:shortest, :], features[filename_b][:shortest, :], dim=1).mean().item() # ??? for key, similarity in similarities.items(): filename_a, filename_b = key.split(":") if filename_a not in sorted_similarities: sorted_similarities[filename_a] = {} if filename_b not in sorted_similarities[filename_a]: sorted_similarities[filename_a][filename_b] = similarity if filename_b not in sorted_similarities: sorted_similarities[filename_b] = {} if filename_a not in sorted_similarities[filename_b]: sorted_similarities[filename_b][filename_a] = similarity # sort similarities scores for key, sorted_similarity in sorted_similarities.items(): sorted_similarities[key] = sorted([ ( filename, similarity ) for filename, similarity in sorted_similarity.items() ], key=lambda x: x[1], reverse=True) most_filename, most_score = sorted_similarities[key][0] least_filename, least_score = sorted_similarities[key][-1] if verbose: print( f'{key}:\n\tMost: {most_filename} ({most_score:.3f})\n\tLeast: {least_filename} ({least_score:.3f})' ) # to-do: store this somewhere return sorted_similarities def main(): parser = argparse.ArgumentParser() parser.add_argument("--input-speaker", type=Path) parser.add_argument("--yaml", type=Path) parser.add_argument("--text", action="store_true") parser.add_argument("--audio-backend", type=str, default="encodec") parser.add_argument("--dtype", type=str, default="bfloat16") parser.add_argument("--amp", action="store_true") parser.add_argument("--device", type=str, default="cuda") args = parser.parse_args() process( input_speaker=args.input_speaker, yaml=args.yaml, text=args.text, audio_backend=args.audio_backend, device=args.device, dtype=args.dtype, amp=args.amp, verbose=True, ) if __name__ == "__main__": main()