from .base import Base, list_to_tensor, Categorical from ..config import cfg import torch from torch.nn.utils.rnn import pad_sequence import random import math from einops import rearrange from torch import Tensor from tqdm import trange from ..emb.qnt import trim class AR_NAR(Base): @property def causal(self): return True @property def norm_type(self): return "ln" # if self.n_resp_levels == 1 else "adaln" @property def arch_type(self) -> str: if hasattr(self, "config") and self.config: return self.config.arch_type return cfg.model.arch_type @property def n_prom_levels(self) -> int: return cfg.model.prom_levels @property def n_resp_levels(self) -> int: if hasattr(self, "config") and self.config: return self.config.resp_levels return cfg.model.resp_levels @property def n_max_levels(self) -> int: return cfg.model.max_levels @property def n_tasks(self) -> int: return cfg.model.tasks @property def n_langs(self) -> int: return cfg.model.langs @property def n_tones(self) -> int: return cfg.model.tones @property def recurrent_chunk_size(self) -> int: return 0 """ @property def rotary_embedding_base(self) -> float: if hasattr(self, "config") and self.config: return self.config.rotary_embedding_base return cfg.model.rotary_embedding_base """ @property def interleave(self) -> bool: return False @property def monolithic(self) -> bool: return True @property def version(self) -> int: if hasattr(self, "config") and self.config: return self.config.version return cfg.model.version def _prune(self, l: Tensor): indices = (l == self.stop_token).nonzero() if len(indices) == 0: return l return l[: indices.min().item()] @staticmethod def _unsqueeze_list(x_list, axis=-1): return [x.unsqueeze(dim=axis) for x in x_list] def forward( self, text_list: list[Tensor], proms_list: list[Tensor], resps_list: list[Tensor] | None = None, lang_list: list[Tensor] | None = None, tone_list: list[Tensor] | None = None, max_steps: int = 1000, max_levels: int = 0, max_resp_context: int = -1, sampling_temperature: float = 1.0, sampling_min_temperature: float = -1.0, sampling_top_k: int = -100, sampling_top_p: float = 1.0, sampling_repetition_penalty: float = 1.0, sampling_repetition_penalty_decay: float = 0.0, sampling_length_penalty: float = 0.0, sampling_beam_width: int = 0, sampling_mirostat_tau: float = 0.0, sampling_mirostat_eta: float = 0.1, ): device = text_list[0].device batch_size = len(text_list) # is training or NAR if resps_list is not None: n_levels_set = {r.shape[-1] for r in resps_list} n_levels = next(iter(n_levels_set)) # is training if n_levels == self.n_resp_levels: # might be better to have this decided on the dataloader level if cfg.experimental and False: # makes higher levels less likely def generate( lo=0, hi=8 ): index = lo p = random.random() for i in range(lo, hi): if p < 1.0 / (2 ** i): index = i return int(index) quant_levels = torch.Tensor([ generate(0, self.n_resp_levels) for _ in range(batch_size) ]).to(dtype=torch.int16) else: quant_levels = torch.randint(0, self.n_resp_levels, (batch_size,)) # randomly select a target RVQ-bin level (0 being AR, 1+ being NAR) """ if cfg.model.p_ar_level == "auto" or cfg.model.p_ar_level is None: quant_levels = torch.randint(0, self.n_resp_levels, (batch_size,)) # randomly select a target RVQ-bin level (0 being AR, 1+ being NAR) else: quant_levels = torch.Tensor([ 0 if random.random() < cfg.model.p_ar_level else random.randint(1, self.n_resp_levels) for _ in range(batch_size) ]) """ targ_list = [r[..., l] for r, l in zip(resps_list, quant_levels)] # ensures we only have 1 RVQ-bin (our target) resps_list = [r if l == 0 else r[..., :l] for r, l in zip(resps_list, quant_levels)] # r[..., 0] is technically correct, but only r[:, 0] gets passed through the embedding """ if cfg.experimental: proms_list = [ r if l == 0 else trim(r, 75 * 3) for r, l in zip(proms_list, quant_levels) ] # trim input prompt to 3 seconds """ # append stop tokens for AR for i in range(batch_size): if quant_levels[i] > 0: continue resps_list[i] = torch.cat([resps_list[i], torch.Tensor([[self.stop_token] * n_levels]).to(device=device, dtype=torch.int16) ]) targ_list[i] = torch.cat([targ_list[i], torch.Tensor([self.stop_token]).to(device=device, dtype=torch.int16) ]) inputs = self.inputs( text_list=text_list, proms_list=proms_list, resps_list=resps_list, targ_list=targ_list, lang_list=lang_list, tone_list=tone_list ) return super().forward( inputs=inputs, quant_levels=quant_levels, ) # is NAR if max_levels == 0: max_levels = self.n_resp_levels - 1 prev_list = resps_list for n in trange( max_levels, desc="NAR" ): level = prev_list[0].shape[-1] if level >= max_levels + 1: # min(max_levels + 1, self.n_resp_levels): # commented out to experiment with exceeding trained levels break quant_levels = torch.full((len(text_list),), level) inputs = self.inputs( text_list=text_list, proms_list=proms_list, resps_list=prev_list, lang_list=lang_list, tone_list=tone_list, ) logits = super().forward( inputs=inputs, quant_levels=quant_levels, ) resps_list = super().sample( logits=logits, resps_list=prev_list, quant_levels=quant_levels, temperature=sampling_temperature, min_temperature=sampling_min_temperature, top_p=sampling_top_p, top_k=sampling_top_k, repetition_penalty=sampling_repetition_penalty, repetition_penalty_decay=sampling_repetition_penalty_decay, #length_penalty=sampling_length_penalty, #beam_width=sampling_beam_width, #mirostat=mirostat, ) prev_list = [ torch.cat([rs, r.unsqueeze(-1).to(device)], dim=-1) for rs, r in zip(prev_list, resps_list) ] return prev_list # is AR sequence_list = [ torch.zeros(0, device=device).to(torch.int16) for _ in text_list ] stopped = torch.zeros(batch_size, device=device).bool() recurrent_state = [] if cfg.inference.recurrent_forward else None mirostat = [ {"n": 1024, "tau": sampling_mirostat_tau, "eta": sampling_mirostat_eta, "max_surprise": sampling_mirostat_eta * 2, "error_surprise": 0, "running_total_surprise": 0} ] * batch_size if sampling_mirostat_tau > 0.0 else None scores = [ 1.0 ] * sampling_beam_width if self.interleave: max_steps *= self.n_prom_levels # get next in sequence for n in trange(max_steps // max(1, self.recurrent_chunk_size), desc="AR"): # experimental rolling response to avoid too-long perplexity hits despite RetNet allegedly fixing this. # UNTESTED. In theory it would be better to also adjust the text, but there's no way of correlating text to segment of audio without something like wav2vec2 if max_resp_context > 0: resps_list = self._unsqueeze_list([ sequence[-max_resp_context:] for sequence in sequence_list ] ) else: resps_list = self._unsqueeze_list(sequence_list) inputs = self.inputs( text_list=text_list, proms_list=proms_list, resps_list=resps_list, lang_list=lang_list, tone_list=tone_list, ) if recurrent_state is not None: logits, recurrent_state = super().forward( inputs=inputs, state=recurrent_state, ) else: logits = super().forward( inputs=inputs, state=recurrent_state, ) r = super().sample( logits=logits, resps_list=resps_list, temperature=sampling_temperature, min_temperature=sampling_min_temperature, top_p=sampling_top_p, top_k=sampling_top_k, repetition_penalty=sampling_repetition_penalty, repetition_penalty_decay=sampling_repetition_penalty_decay, length_penalty=sampling_length_penalty, beam_width=sampling_beam_width, mirostat=mirostat, ) if mirostat is not None: # r is the state mirostat = r # extract token from state r = [ state["token"] for state in mirostat ] # we do it here because the sampler will already expand our logits list elif sampling_beam_width > 0: # expand tuple r, s = r # first step, expand batch if batch_size == 1: batch_size = sampling_beam_width text_list = text_list * sampling_beam_width proms_list = proms_list * sampling_beam_width sequence_list = sequence_list * sampling_beam_width stopped = torch.zeros(batch_size, device=device).bool() scores = [ scores[i] + score for i, score in enumerate(s) ] # append tokens for i, ri in enumerate(r): if self.stop_token in ri: stopped[i] = True sequence_list[i] = torch.cat([sequence_list[i], ri.to(device)]) # stop token found stopped |= r == self.stop_token if stopped.all().item(): break # pick the best scoring candidate # desu this is always going to be candidate 0 if sampling_beam_width: sequence_list = [ sequence_list[0] ] return [self._prune(r) for r in sequence_list] def example_usage(): #cfg.trainer.backend = "local" cfg.hyperparameters.gradient_accumulation_steps = 1 from functools import partial from einops import repeat from tqdm import tqdm from ..emb.qnt import decode_to_file, unload_model from ..engines import Engine from ..utils import wrapper as ml import numpy as np import re device = "cuda" x8 = partial(repeat, pattern="t -> t l", l=cfg.model.prom_levels) def tokenize(content): return torch.tensor( cfg.tokenizer.encode(content) ) def _load_quants(path) -> Tensor: if cfg.inference.audio_backend == "dac": qnt = np.load(f'{path}.dac', allow_pickle=True)[()] return torch.from_numpy(qnt["codes"].astype(np.int16))[0, :cfg.model.prom_levels, :].t().to(torch.int16) return torch.load(f'{path}.pt')[0][:, :cfg.model.prom_levels].t().to(torch.int16) qnt = _load_quants("./data/qnt") text_list = [ tokenize("ˈaɪ wɪl nˌɑːt ˈæsk ɐ sˈɛkənd tˈaɪm").to(device), ] proms_list = [ qnt.to(device), ] resps_list = [ qnt.to(device), ] text_list = text_list[:1] proms_list = proms_list[:1] resps_list = resps_list[:1] # rentet-full is the only configuration with BitNet's BitLinear that converges despite the grad_norm saying otherwise kwargs = { 'n_tokens': 1024, 'd_model': 1024, # 256, # 1024, # 1536 'n_heads': 16, # 4, # 16, # 24 'n_layers': 12, # 32 'n_experts': 1, 'l_padding': 8 if cfg.fp8.enabled else 0, } """ kwargs = { 'n_tokens': 1024, 'd_model': 256, 'n_heads': 4, 'n_layers': 12, 'n_experts': 8, } """ """ try: kwargs['config'] = cfg.model except Exception as e: pass """ model = AR_NAR(**kwargs).to(device) steps = 750 optimizer = ml.Prodigy(model.parameters(), lr=1.0) #optimizer = ml.Adagrad(model.parameters(), lr=1.0e-2) #optimizer = ml.AdamW(model.parameters(), lr=1.0e-4) engine = Engine(model=model, optimizer=optimizer) # copy embeddings if requested """ if cfg.model._embeddings is not None: embeddings_path = cfg.relpath / cfg.model._embeddings if embeddings_path.exists(): embeddings = torch.load(embeddings_path, map_location=torch.device(cfg.device)) if "module" in embeddings: embeddings = embeddings["module"] frozen_params = set() for k in list(embeddings.keys()): if re.findall(r'_emb.', k): frozen_params.add(k) else: del embeddings[k] engine.module.load_state_dict(embeddings, strict=False) for name, param in engine.module.named_parameters(): if name not in frozen_params: continue param.requires_grad_(False) engine._frozen_params.add(param) """ if (cfg.bitsandbytes.enabled and cfg.bitsandbytes.replace) or (cfg.fp8.enabled): model.model = ml.replace_linear( model.model ) torch.save( { 'module': model.state_dict() }, "./data/test.pth" ) print(f"AR+NAR parameter count: {sum(p.numel() for p in model.parameters() if p.requires_grad)}") @torch.inference_mode() def sample( name, steps=1000 ): if cfg.inference.audio_backend == "dac" and name == "init": return engine.eval() resps_list = engine(text_list, proms_list, max_steps=steps, sampling_temperature=0.95 ) if cfg.inference.audio_backend != "dac": for i, o in enumerate(resps_list): _ = decode_to_file(o, f"data/ar.{i}.{name}.wav", device=device) resps_list = [r.unsqueeze(-1) for r in resps_list] resps_list = engine( text_list, proms_list, resps_list=resps_list, sampling_temperature=0.2 ) for i, o in enumerate(resps_list): _ = decode_to_file(o, f"data/ar+nar.{i}.{name}.wav", device=device) unload_model() def train(): engine.train() t = trange(steps) for i in t: stats = {"step": i} stats |= engine.traverse(text_list=text_list, proms_list=proms_list, resps_list=resps_list) stats |= {"grad_norm": engine.get_global_grad_norm()} tqdm.write(f"{stats}") torch.save( { 'module': model.state_dict() }, "./data/test.pth" ) sample("init", 5) train() sample("final") if __name__ == "__main__": example_usage()