#pragma once // C++ deps #include #include #include // external deps #include #include #include #include // to-do: copy over import/export stuff from engine project (because I don't remember how I set it up in ) #define VALL_E_API #define LLAMA_CPP_EXTENDED 0 // whether the underlying llama.cpp has some extra functions #define LLAMA_CPP_USE_VALL_E_ARCH 0 // whether the underlying llama.cpp is to use the VALL_E arch (or using LLAMA arch) #if !LLAMA_CPP_EXTENDED #include "llama_hack.h" // cringe hotfix but I have to do this until llama.cpp's API exposes the tok_embd #endif // to-do: clean up spaghetti enums const int EMBEDDING_MODE_PROM = 0; const int EMBEDDING_MODE_RESP_AR_NAR = 1; const int EMBEDDING_MODE_RESP_NAR_LEN = 2; const int INFERENCE_MODE_LEN = 0; const int INFERENCE_MODE_AR = 1; const int INFERENCE_MODE_NAR_DEMASK = 2; const int INFERENCE_MODE_NAR = 3; const int MODALITY_AR_NAR = 0; const int MODALITY_NAR_LEN = 1; const int MAX_DURATION = 75 * 12; const int CTX_SIZE = 2048; const int N_THREADS = 8; const int N_GPU_LAYERS = 0; typedef llama_token token_t; typedef std::vector> vall_e_audio_codes_t; // stores embeddings + metadata for an embedding range struct io_t { std::string name; uint32_t start; uint32_t end; int32_t head_idx = -1; int32_t n_embd = 0; int32_t n_vocab = 0; std::vector embds = {}; ggml_tensor* head = NULL; }; // stores the mappings between tokens, input embeddings, and output heads struct io_map_t { // model's original params int32_t n_embd = 0; int32_t n_vocab = 0; // mapping std::unordered_map io = {}; // context to store slices ggml_context* ctx = NULL; }; struct score_t { int32_t idx; float value; bool operator<( const score_t& that ) const { return this->value < that.value; } }; struct merge_entry_t { std::u32string pre; std::u32string post; std::u32string resolved; token_t pre_token; token_t post_token; token_t resolved_token; }; struct vall_e_context_params_t { std::string model_path; std::string encodec_path; int32_t gpu_layers = N_GPU_LAYERS; int32_t cpu_threads = N_THREADS; int32_t ctx_size = CTX_SIZE; bool verbose = false; }; // stores everything needed for vall_e.cpp struct vall_e_context_t { vall_e_context_params_t params; io_map_t io_map; struct { llama_model* model = NULL; llama_context* ctx = NULL; } llama; struct { encodec_context* ctx; } encodec; }; // stores the raw inputs to be fed struct vall_e_inputs_t { std::string task = "tts"; std::vector phn = {}; token_t lang = 0; token_t rvq_l = 0; vall_e_audio_codes_t prom = {}; vall_e_audio_codes_t resp = {}; }; // helper tensor functions std::vector VALL_E_API read_2d_tensor( struct ggml_tensor* tensor ); //ggml_tensor* VALL_E_API view_2d_tensor( ggml_tensor* tensor, int32_t start, int32_t end, int32_t dim = 0 ); // cringe method to keep in my pocket ggml_tensor* VALL_E_API view_2d_tensor( ggml_context* ctx, ggml_tensor* tensor, int32_t start, int32_t end, int32_t dim = 0 ); void VALL_E_API print_tokens( const std::vector& tokens, const std::string& prefix = "Tokens: " ); std::vector> VALL_E_API map_embeddings( const std::vector& tokens, int n_embd, const float* embds ); std::vector> VALL_E_API sum_embeddings( const vall_e_audio_codes_t& input, int n_embd, int rvq_l, const float** embds, int mode = EMBEDDING_MODE_PROM ); std::vector VALL_E_API soft_max( int n_logits, const float* logits ); // batch and inferencing void VALL_E_API batch_add( llama_batch& batch, token_t id, int n_embd, const float* embds, llama_pos pos, bool output, const std::vector & seq_ids = {0} ); void VALL_E_API fill_batch( llama_batch& batch, vall_e_inputs_t& input, io_map_t& inputs_map, int mode ); std::vector VALL_E_API generate( vall_e_context_t* ctx, vall_e_inputs_t& input, int max_tokens, int mode, bool verbose = true ); // std::vector VALL_E_API phonemize( vall_e_context_t* ctx, const std::string& text, const std::string& language = "auto" ); // encodec helpers std::vector VALL_E_API read_audio_from_disk( const std::string& path ); void VALL_E_API write_audio_to_disk( const std::vector& waveform, const std::string& path ); std::vector> VALL_E_API encode_audio( struct encodec_context* ectx, const std::vector& waveform ); std::vector VALL_E_API decode_audio( struct encodec_context* ectx, const std::vector>& codes_2d ); // model-accessing helpers const io_t& VALL_E_API vall_e_inputs_map_get_embeddings( io_map_t& inputs_map, const std::string& name ); const float* VALL_E_API vall_e_inputs_map_get_embeddings_p( io_map_t& inputs_map, const std::string& name ); int32_t VALL_E_API vall_e_inputs_map_get_classifier_idx( io_map_t& inputs_map, const std::string& name ); void VALL_E_API vall_e_inputs_map_init( io_map_t&, llama_model* model ); // context management vall_e_context_t* VALL_E_API vall_e_load( const vall_e_context_params_t& params ); vall_e_inputs_t vall_e_prepare_inputs( vall_e_context_t* ctx, const std::string& text, const std::string& prompt_path, const std::string& lang ); vall_e_audio_codes_t vall_e_generate( vall_e_context_t* ctx, vall_e_inputs_t& inputs, int modality = MODALITY_NAR_LEN ); void VALL_E_API vall_e_free( vall_e_context_t* ctx );