# todo: clean this mess up
import copy
import h5py
import json
import logging
import numpy as np
import os
import random
import torch
from .config import cfg
from .emb.qnt import trim_random, repeat_extend_audio, merge_audio, decode_to_file
from collections import defaultdict
from functools import cache, cached_property
from itertools import groupby, zip_longest
from pathlib import Path
from typing import Any
from torch import Tensor
from torch.utils.data import DataLoader, Dataset as _Dataset
from torch.utils.data.distributed import DistributedSampler
from tqdm.auto import tqdm
# torch.multiprocessing.set_sharing_strategy("file_system")
_logger = logging.getLogger(__name__)
def get_phone_symmap():
if cfg.dataset.use_hdf5 and 'symmap' in cfg.hdf5:
return json.loads( cfg.hdf5['symmap'].asstr()[()] )
symmap = {'': 1, '': 2, ' ': 3, '.': 4, ',': 5, '!': 6, '?': 7, 'p': 7, 'iː': 8, 'ɚ': 9, 'ˌ': 10, 'dˌ': 11, 'mˌ': 12, 'd': 13, 'ɹ': 14, 'tˈ': 15, 'pˌ': 16, 'uː': 17, 'l': 18, 'æ': 19, 'ɛ': 20, 'ɪ': 21, 'j': 22, 'ʊ': 23, 't': 24, 'n': 25, 'v': 26, 'a': 27, 'o': 28, 'ŋ': 29, 'w': 30, 'ʌ': 31, 'hˈ': 32, 'ɡˈ': 33, 'ə': 34, 'θˈ': 35, 'dˈ': 36, 'wˌ': 37, 'h': 38, 'z': 39, 'k': 40, 'ð': 41, 'ɡˌ': 42, 'ˈ': 43, 'fˈ': 44, 'i': 45, 's': 46, 'ʃ': 47, 'wˈ': 48, 'ðˈ': 49, 'ɹˈ': 50, 'lˈ': 51, 'ɡ': 52, 'oː': 53, 'mˈ': 54, 'e': 55, 'ɑː': 56, 'nˈ': 57, 'm': 58, 'θˌ': 59, 'sˈ': 60, 'f': 61, 'ɔː': 62, 'hˌ': 63, 'b': 64, 'jˈ': 65, 'ɐ': 66, 'ʒˈ': 67, 'θ': 68, 'bˈ': 69, 'ɾ': 70, 'ɜː': 71, 'ʌˈ': 72, 'ʃˌ': 73, 'bˌ': 74, 'kˈ': 75, 'ɔ': 76, 'zˈ': 77, 'ᵻ': 78, 'kˌ': 79, 'vˈ': 80, 'fˌ': 81, 'ʒ': 82, 'ʃˈ': 83, 'ɹˌ': 84, 'tˌ': 85, 'pˈ': 86, 'ðˌ': 87, 'sˌ': 88, 'nˌ': 89, 'lˌ': 90, '̩': 91, 'ʔ': 92, 'vˌ': 93, 'ɪˈ': 94, '"': 95, 'ɪˌ': 96, 'ʒˌ': 97, 'uːˌ': 98, 'ʊˈ': 99, 'jˌ': 100, 'uːˈ': 101, 'iːˈ': 102, 'zˌ': 103, '.ˈ': 104, '…': 105, 'ŋˌ': 106, 'ɐˌ': 107, '—ˈ': 108, 'iˌ': 109, 'iːˌ': 110, 'ɛː': 111, ')': 112, ')ˈ': 113, '(': 114, 'u': 115, '-': 116, 'ɖˈ': 117, 'iˈ': 118, 'ʰˈ': 119, 'ɟˈ': 120, '̃': 121, 'eː': 122, 'ɾˈ': 123, 'r': 124, 'ʰ': 125, '-ˌ': 126, 'ɫ': 127, 'q': 128, '—': 129, 'ʊˌ': 130, 'aː': 131, 'cˈ': 132, '…ˈ': 133, 'c': 134, 'ɳ': 135, 'ɐˈ': 136, 'x': 137, 'ʔˌ': 138, '.ˌ': 139, 'ɑ': 140, '?ˈ': 141, '̩ˈ': 142, '"ˈ': 143, ',ˈ': 144, 'ŋˈ': 145, 'əˌ': 146, '!ˈ': 147, '"ˌ': 148, '?ˌ': 149, ',ˌ': 150, '—ˌ': 151, '̩ˌ': 152, 'əˈ': 153, '!ˌ': 154, 'ɬ': 155, 'ʲ': 156, '¡': 157, 'ɯ': 158, 'qˌ': 159, 'ʑ': 160, 'ʑˈ': 161, '¿': 162, 'ɑːˈ': 163, 'iːː': 164, 'ɛˈ': 165, '¡ˈ': 166, 'æˈ': 167, 'ç': 168, 'ɾˌ': 169, 'ᵻˈ': 170, 'xˈ': 171, 'ɔːˈ': 172, ';': 173, 'ɬˌ': 174, ':': 175, 'ʔˈ': 176, 'ɑːˌ': 177, 'ɬˈ': 178}
return symmap
def get_task_symmap():
start = 1024
symmap = {
"": -100,
"": start + 0,
"": start + 1,
"": start + 2,
"": start + 3,
"": start + 4,
"": start + 5,
"": start + 6,
}
return symmap
def _replace_file_extension(path, suffix):
return (path.parent / path.name.split(".")[0]).with_suffix(suffix)
def _get_hdf5_path(path):
path = str(path)
if path[:2] != "./":
path = f'./{path}'
return path.replace(cfg.cfg_path, "")
def _get_quant_path(path):
return _replace_file_extension(path, ".qnt.pt")
def _get_phone_path(path):
return _replace_file_extension(path, ".phn.txt")
def _load_quants(path) -> Tensor:
path = _get_quant_path(path)
return torch.load(path)[0][:cfg.models.prom_levels, :].t().to(torch.int16)
@cache
def _get_phones(path, lang_marker="en"):
path = _get_phone_path(path)
with open(path, "r", encoding="utf8") as f:
content = f.read()
split = content.split(" ")
return [f""] + [ " " if not p else p for p in split ] + [f""]
def _interleaved_reorder(l, fn):
groups = defaultdict(list)
for e in l:
groups[fn(e)].append(e)
groups = {k: groups[k] for k in sorted(groups)}
for interleaved in zip_longest(*groups.values()):
for value in interleaved:
if value is not None:
yield value
@cache
def _validate(path, min_phones, max_phones, min_duration, max_duration):
if cfg.dataset.use_hdf5:
key = _get_hdf5_path(path)
if key not in cfg.hdf5:
return False
phones = cfg.hdf5[key].attrs['phonemes']
duration = cfg.hdf5[key].attrs['duration']
if phones < min_phones or phones > max_phones:
return False
if duration < min_duration or duration > max_duration:
return False
return True
if not os.path.exists(_get_phone_path(path)) or not os.path.exists(_get_quant_path(path)):
return False
phones = _get_phones(path)
unique_phones = list(set(phones))
if len(unique_phones) == 0:
return False
if len(unique_phones) == 1 and unique_phones[0] == " ":
return False
if len(phones) < min_phones or len(phones) > max_phones:
return False
return True
class Dataset(_Dataset):
def __init__(
self,
paths,
phone_symmap=None,
spkr_symmap=None,
task_symmap=None,
min_phones=cfg.dataset.phones_range[0],
max_phones=cfg.dataset.phones_range[1],
min_duration=cfg.dataset.duration_range[0],
max_duration=cfg.dataset.duration_range[1],
training=False,
extra_paths_by_spkr_name: dict[str, list] = {},
):
super().__init__()
self._head = None
self.min_phones = min_phones
self.max_phones = max_phones
self.min_duration = min_duration
self.max_duration = max_duration
self.sampler = None
if cfg.dataset.validate:
self.paths = [
path for path in paths if _validate(path, self.min_phones, self.max_phones, self.min_duration, self.max_duration)
]
else:
self.paths = paths
self.phone_symmap = phone_symmap or self._get_phone_symmap()
self.spkr_symmap = spkr_symmap or self._get_spkr_symmap()
self.task_symmap = get_task_symmap or self._get_task_symmap()
self.training = training
# assert len(self.phone_symmap) < 256, "Unique token count should be [0,255] to fit within uint8"
self.text_dtype = torch.uint8 if len(self.phone_symmap) < 256 else torch.int16
self.paths_by_spkr_name = self._get_paths_by_spkr_name(extra_paths_by_spkr_name)
if cfg.dataset.validate:
self.paths = [
p for p in self.paths if len(self.paths_by_spkr_name[cfg.get_spkr(p)]) > 1
]
if cfg.dataset.sample_type == "path":
self.paths = [*_interleaved_reorder(self.paths, cfg.get_spkr)]
if len(self.paths) == 0 and training:
raise ValueError("No valid path is found for training.")
self.duration = 0
self.durations = {}
if cfg.dataset.use_hdf5:
for path in self.paths:
key = _get_hdf5_path(path)
spkr_name = cfg.get_spkr(path)
spkr_id = self.spkr_symmap[spkr_name]
duration = cfg.hdf5[key].attrs['duration']
self.duration += duration
if spkr_id not in self.durations:
self.durations[spkr_id] = duration
else:
self.durations[spkr_id] += duration
def _get_paths_by_spkr_name(self, extra_paths_by_spkr_name: dict[str, list]):
ret = defaultdict(list)
for path in self.paths:
ret[cfg.get_spkr(path)].append(path)
for k, v in extra_paths_by_spkr_name.items():
ret[k].extend(v)
return {**ret}
@cached_property
def phones(self):
return sorted(set().union(*[_get_phones(path) for path in self.paths]))
@cached_property
def spkrs(self):
return sorted({cfg.get_spkr(path) for path in self.paths})
@cached_property
def tasks(self):
return cfg.dataset.tasks_list # ["tts", "tts", "ns", "sr", "tse", "tts", "tts"] # , "cse", "nse"
def _get_phone_symmap(self):
return get_phone_symmap()
def _get_spkr_symmap(self):
return {s: i for i, s in enumerate(self.spkrs)}
def _get_task_symmap(self):
return get_task_symmap()
def get_task_token( self, token ):
if not hasattr(self, "task_symmap"):
self.task_symmap = self._get_task_symmap()
return torch.Tensor([[ self.task_symmap[f'<{token}>'] for _ in range(cfg.models.prom_levels) ]]).to(dtype=torch.int16)
def sample_noise(self):
paths = []
for data_dir in cfg.dataset.noise:
paths.extend(data_dir.rglob("*.qnt.pt"))
path = random.choice(paths)
if False and cfg.dataset.use_hdf5:
key = f'/noise/{_get_hdf5_path(path)}'
qnt = torch.from_numpy(cfg.hdf5[key]["audio"][:, :cfg.models.prom_levels]).to(torch.int16)
else:
qnt = _load_quants(path)
return qnt
def sample_speakers(self, ignore=[]):
choices = set(self.spkrs) - set(ignore)
return random.choice([*choices])
def sample_prompts(self, spkr_name, ignore):
prom_list = []
choices = set(self.paths_by_spkr_name[spkr_name]) - {ignore}
choices = [*choices]
# no other utterances, it'd make more sense to prune speakers with only one utterance in the validatoin step
if len(choices) == 0:
choices = [*set(self.paths_by_spkr_name[spkr_name])]
"""
raise ValueError(
f"Failed to find another different utterance for {spkr_name}."
)
"""
# shuffle it up a bit
prom_length = 0
trim_length = int(cfg.dataset.prompt_duration * 75) + random.randint(-16, 16)
for _ in range(cfg.dataset.max_prompts):
path = random.choice(choices)
if cfg.dataset.use_hdf5:
key = _get_hdf5_path(path)
qnt = torch.from_numpy(cfg.hdf5[key]["audio"][:, :cfg.models.prom_levels]).to(torch.int16)
else:
qnt = _load_quants(path)
if cfg.dataset.prompt_duration > 0 and trim_length < qnt.shape[0]:
qnt = trim_random( qnt, trim_length )
prom_list.append(qnt)
prom_length += qnt.shape[0]
if prom_length >= trim_length or random.random() > cfg.dataset.random_utterance:
break
prom = torch.cat(prom_list)
if cfg.dataset.prompt_duration > 0 and trim_length < prom.shape[0]:
prom = trim_random( prom, trim_length )
return prom
def __getitem__(self, index):
if cfg.dataset.sample_type == "speaker":
spkr_name = self.spkrs[index]
spkr_id = self.spkr_symmap[spkr_name]
path = random.choice([*set(self.paths_by_spkr_name[spkr_name])])
else:
path = self.paths[index]
spkr_name = cfg.get_spkr(path)
spkr_id = self.spkr_symmap[spkr_name]
if cfg.dataset.use_hdf5:
key = _get_hdf5_path(path)
text = torch.from_numpy(cfg.hdf5[key]["text"][:]).to(self.text_dtype)
resps = torch.from_numpy(cfg.hdf5[key]["audio"][:, :cfg.models.prom_levels]).to(torch.int16)
else:
text = torch.tensor([*map(self.phone_symmap.get, _get_phones(path))]).to(self.text_dtype)
resps = _load_quants(path)
task = random.choice(self.tasks)
noise_scale = 0.125
# text-to-speech
if task == "tts":
proms = self.sample_prompts(spkr_name, ignore=path) if random.random() < cfg.dataset.random_utterance else resps
# noise suppression || speech removal
elif task == "ns" or task == "sr":
# sample random noise
noise = self.sample_noise()
# extend the noise to fill the target audio
noise = repeat_extend_audio(noise, resps.shape[0])
# create the input prompt by merging the target audio with the noise
proms = merge_audio(resps, noise, scale=[1, noise_scale], device="cpu")
# set the target to just be the noise if
if task == "sr":
resps = noise
# prepend the task token
proms = torch.cat( [self.get_task_token(task), proms] )
# set the text prompt to empty to train without a guided text prompt
if random.random() < 0.5:
text = torch.tensor([1, 2]).to(self.text_dtype)
# target speech extraction
elif task == "tse":
# sample a random, clean, utterance for the target speaker
clean_proms = self.sample_prompts(spkr_name, ignore=path)
# sample a random, clean utterance from a different speaker
other_proms = self.sample_prompts(self.sample_speakers(ignore=[spkr_name]), ignore="")
# overlay the random speaker over the target audio
smallest_size = min(resps.shape[0], other_proms.shape[0])
if other_proms.shape[0] == smallest_size:
noisy_proms = merge_audio( resps[:smallest_size, :], other_proms, scale=[1, random.uniform(0.5, 0.75)], device="cpu" )
noisy_proms = torch.cat( [ noisy_proms, resps[smallest_size:, :] ] )
else:
noisy_proms = merge_audio( resps, other_proms[:smallest_size, :], scale=[1, random.uniform(0.5, 0.75)], device="cpu" )
noisy_proms = torch.cat( [ noisy_proms, other_proms[smallest_size:, :] ] )
# stitch together the promps
proms = torch.cat( [clean_proms, self.get_task_token(task), noisy_proms] )
# set the text prompt to empty to train without a guided text prompt
if random.random() < 0.5:
text = torch.tensor([1, 2]).to(self.text_dtype) #
# speech editing would require higher quality transcription data (phoneme level/word level) unfortunately
# as I need to get a good clean point to trim into
# clean speech editing
elif task == "cse" or task == "nse":
choices = set(self.paths_by_spkr_name[spkr_name]) - {path}
sampled = random.choice([*choices], 4)
if cfg.dataset.use_hdf5:
texts = [ torch.from_numpy(cfg.hdf5[_get_hdf5_path(path)]["text"][:]).to(self.text_dtype) for path in sampled ]
qnts = [ torch.from_numpy(cfg.hdf5[_get_hdf5_path(path)]["audio"][:, :cfg.models.prom_levels]).to(torch.int16) for path in sampled ]
else:
texts = [ torch.tensor([*map(self.phone_symmap.get, _get_phones(path))]).to(self.text_dtype) for path in sampled ]
qnts = [ _load_quants(path) for path in sampled ]
# remove
for text in texts:
text = text[1:-1]
pre_text, mid_text, post_text, edit_text = texts
pre_prom, mid_prom, post_prom, edit_prom = qnts
# randomly drop out pre
if random.random() < 0.125:
pre_text = None
pre_prom = None
# randomly drop out post
if random.random() < 0.125:
post_text = None
post_prom = None
# create new text
text = torch.cat(
[ 1 ] + #
([ pre_text ] if pre_text is not None else []) +
[ edit_text ] +
([ post_post ] if post_post is not None else []) +
[ 2 ] #
)
if task == "nse":
# sample random noise
noise = self.sample_noise()
# it might be better to extend the noise to the sum of the pre+mid+post or pre+edit+post to keep the noise truly coherent
# but it's noise, it's supposed to be random
def noise_proms( proms ):
# ignore if we turned it off
if proms is None:
return None
# extend the noise to fill the target audio
n = repeat_extend_audio(noise, proms.shape[0])
# merge the noise over the utterance
return merge_audio(proms, noise, scale=[1, noise_scale], device="cpu")
# apply noise to all pieces
pre_prom = noise_proms( pre_prom )
mid_prom = noise_proms( mid_prom )
post_prom = noise_proms( post_prom )
edit_prom = noise_proms( edit_prom )
else:
mid_prom = self.get_task_token("mask")
# create new proms
proms = torch.cat(
([ pre_prom ] if pre_prom is not None else []) +
[self.get_task_token("soe")] +
[ mid_prom ] + # is if task is CSE
[self.get_task_token("eoe")] +
([ post_prom ] if post_prom is not None else [])
)
# create new resp
resps = torch.cat(
([ pre_prom ] if pre_prom is not None else []) +
[ edit_prom ] +
([ post_prom ] if post_prom is not None else [])
)
"""
# emulate SVC
# takes in an utterance of the target speaker, a target utterenace as a reference clip as the input prompt
# targets an utterance of the target speaker with the same tempo + pitch + etc as the reference clip
# NOTE: I do not have a clue how to go about this. I *could* dynamically generate clips through RVC here, but I imagine the penalty would be astronomical
# ahead-of-time dataset preparation of a shit ton of RVC clips might be the key.
# aside from that, I have no clue how to go about training this, as this is entirely a proof of concept task.
elif task == "svc":
# sample a random, clean utterance for the target speaker
proms = self.sample_prompts(spkr_name, ignore=path) if random.random() < cfg.dataset.random_utterance else resps
# sample a reference clip from a different speaker
ref_proms = self.sample_rvc(self.sample_speakers(ignore=[spkr_name]))
#
resps =
# stitch together the promps
proms = torch.cat( [proms, self.get_task_token(task), ref_proms] )
# set the text prompt to empty to train without a guided text prompt
if random.random() < 0.5:
text = torch.tensor([1, 2]).to(self.text_dtype)
"""
return dict(
index=index,
path=path,
spkr_name=spkr_name,
spkr_id=spkr_id,
task=task,
text=text,
proms=proms,
resps=resps,
)
def head_(self, n):
self._head = n
def training_(self, value):
self.training = value
def __len__(self):
if cfg.dataset.sample_type == "speaker":
return min(len(self.spkrs), self._head or len(self.spkrs))
return min(len(self.paths), self._head or len(self.paths))
def pin_memory(self):
self.text = self.text.pin_memory()
self.proms = self.proms.pin_memory()
self.resps = self.resps.pin_memory()
self.resp = self.resp.pin_memory()
return self
def collate_fn(samples: list[dict]):
batch: dict[str, Any] = {k: [s[k] for s in samples] for k in samples[0]}
return batch
def _seed_worker(worker_id):
worker_seed = torch.initial_seed() % 2**32
np.random.seed(worker_seed)
random.seed(worker_seed)
def _create_dataloader(dataset, training):
sampler = None
shuffle = True
if cfg.distributed and training:
sampler = DistributedSampler(dataset)
shuffle = False
return DataLoader(
dataset=dataset,
batch_size=cfg.hyperparameters.batch_size if training else cfg.evaluation.batch_size,
shuffle=shuffle,
drop_last=training,
num_workers=cfg.dataset.workers,
collate_fn=collate_fn,
persistent_workers=True,
pin_memory=False, # True,
worker_init_fn=_seed_worker,
sampler=sampler,
)
def _load_dataset_paths():
hf = cfg.hdf5
paths = {
"training": [],
"validation": [],
}
datasets = {
"training": [],
"validation": [],
}
def get_paths( data_dir, type="training" ):
key = f"/{type}{_get_hdf5_path(data_dir)}"
if key not in cfg.hdf5:
return
paths[type].extend([ f"{key}/{child.attrs['id']}" for child in cfg.hdf5[key].values() ])
for data_dir in cfg.dataset.training:
get_paths( data_dir, "training" )
for data_dir in cfg.dataset.validation:
get_paths( data_dir, "validation" )
for _, type in enumerate(paths):
dirs = paths[type]
if len(dirs) == 0:
continue
dirs = [ Path(p) for p in dirs ]
pairs = sorted([(cfg.get_spkr(p), p) for p in dirs])
for _, group in groupby(pairs, lambda pair: pair[0]):
shuffled = sorted([p for _, p in group])
random.seed(0)
random.shuffle(shuffled)
datasets[type].extend(shuffled)
return datasets["training"], datasets["validation"]
# to-do: mirror the hdf5-based load function
def _load_train_val_paths():
paths = []
train_paths = []
val_paths = []
for data_dir in cfg.dataset.training:
paths.extend(data_dir.rglob("*.qnt.pt"))
if len(paths) > 0:
pairs = sorted([(cfg.get_spkr(p), p) for p in paths])
del paths
for _, group in groupby(pairs, lambda pair: pair[0]):
paths = sorted([p for _, p in group])
random.seed(0)
random.shuffle(paths)
train_paths.extend(paths)
for data_dir in cfg.dataset.validation:
paths.extend(data_dir.rglob("*.qnt.pt"))
if len(paths) > 0:
pairs = sorted([(cfg.get_spkr(p), p) for p in paths])
del paths
for _, group in groupby(pairs, lambda pair: pair[0]):
paths = sorted([p for _, p in group])
random.seed(0)
random.shuffle(paths)
val_paths.extend(paths)
train_paths, val_paths = map(sorted, [train_paths, val_paths])
if len(train_paths) == 0:
raise RuntimeError(f"Failed to find any .qnt.pt file in specified training dataset.")
# to-do: allow setting aside a fixed portion of the training dataset for validation
# something like the last X percent of each speaker is set aside
if len(val_paths) == 0:
val_paths = [ train_paths[0] ]
return train_paths, val_paths
@cfg.diskcache()
def create_datasets():
train_paths, val_paths = _load_dataset_paths() if cfg.dataset.use_hdf5 else _load_train_val_paths()
train_dataset = Dataset(
train_paths,
training=True,
)
val_dataset = Dataset(
val_paths,
train_dataset.phone_symmap,
#train_dataset.spkr_symmap,
#extra_paths_by_spkr_name=train_dataset.paths_by_spkr_name,
)
val_dataset.head_(cfg.evaluation.size)
return train_dataset, val_dataset
def create_train_val_dataloader():
train_dataset, val_dataset = create_datasets()
subtrain_dataset = copy.deepcopy(train_dataset)
if cfg.dataset.sample_type == "path":
subtrain_dataset.head_(cfg.evaluation.size)
train_dl = _create_dataloader(train_dataset, training=True)
val_dl = _create_dataloader(val_dataset, training=False)
subtrain_dl = _create_dataloader(subtrain_dataset, training=False)
_logger.info(str(train_dataset.phone_symmap))
_logger.info(str(train_dataset.spkr_symmap))
_logger.info(f"#samples (train): {len(train_dataset)}.")
_logger.info(f"#samples (val): {len(val_dataset)}.")
_logger.info(f"#samples (subtrain): {len(subtrain_dataset)}.")
"""
_logger.info(f"#durations (train): {str(train_dataset.durations)}.")
_logger.info(f"#durations (val): {str(val_dataset.durations)}.")
_logger.info(f"#durations (subtrain): {str(subtrain_dataset.durations)}.")
"""
_logger.info(f"#duration (train): {str(train_dataset.duration)}.")
_logger.info(f"#duration (val): {str(val_dataset.duration)}.")
_logger.info(f"#duration (subtrain): {str(subtrain_dataset.duration)}.")
assert isinstance(subtrain_dl.dataset, Dataset)
return train_dl, subtrain_dl, val_dl
# parse yaml to create an hdf5 tile
def create_dataset_hdf5():
symmap = get_phone_symmap()
root = cfg.cfg_path
hf = cfg.hdf5
def add( dir, type="training" ):
dir = "./" + str(dir)
name = dir.replace(root, "")
print( str(dir), name )
if not os.path.isdir(f'{root}/{name}/'):
return
# tqdm.write(f'{root}/{name}')
files = os.listdir(f'{root}/{name}/')
# grab IDs for every file
ids = { ".".join(file.split(".")[:-2]) for file in files }
for id in tqdm(ids, desc=f"Processing {name}"):
if not os.path.exists(f'{root}/{name}/{id}.qnt.pt') or not os.path.exists(f'{root}/{name}/{id}.phn.txt'):
continue
key = f'{type}/{name}/{id}'
if key in hf:
# print("Skipping existing entry:", key)
continue
group = hf.create_group(key)
# audio
qnt = torch.load(f'{root}/{name}/{id}.qnt.pt')[0].t()
group.create_dataset('audio', data=qnt.numpy(), compression='lzf')
# text
with open(f'{root}/{name}/{id}.phn.txt', "r", encoding="utf8") as f:
content = f.read()
split = content.split(" ")
phones = [f""] + [ " " if not p else p for p in split ] + [f""]
for s in set(phones):
if s not in symmap:
symmap[s] = len(symmap.keys())
phn = [ symmap[s] for s in phones ]
group.create_dataset('text', data=phn, compression='lzf', chunks=True)
# metadata
group.attrs['id'] = id
group.attrs['type'] = type
group.attrs['speaker'] = name
group.attrs['duration'] = qnt.shape[0] / 75
group.attrs['phonemes'] = len(phn)
# training
for data_dir in tqdm(cfg.dataset.training, desc="Processing Training"):
add( data_dir, type="training" )
# validation
for data_dir in tqdm(cfg.dataset.validation, desc='Processing Validation'):
add( data_dir, type="validation" )
# noise
for data_dir in tqdm(cfg.dataset.noise, desc='Processing Noise'):
add( data_dir, type="noise" )
# write symmap
hf.create_dataset('symmap', data=json.dumps(symmap))
hf.close()
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser("Save trained model to path.")
parser.add_argument("--task", type=str)
args = parser.parse_args()
task = args.task
if args.task == "hdf5":
create_dataset_hdf5()
elif args.task == "sample":
train_dl, subtrain_dl, val_dl = create_train_val_dataloader()
samples = {
"training": [ next(iter(train_dl)), next(iter(train_dl)) ],
"evaluation": [ next(iter(subtrain_dl)), next(iter(subtrain_dl)) ],
"validation": [ next(iter(val_dl)), next(iter(val_dl)) ],
}
for k, v in samples.items():
for i in range(len(v)):
del v[i]['proms']
del v[i]['resps']
print(f'{k}:', v)
"""
elif args.task == "tasks":
index = 0
task = "ns"
train_dataset, val_dataset = create_datasets()
train_dataset.task_symmap = get_task_symmap()
if cfg.dataset.sample_type == "speaker":
spkr_name = train_dataset.spkrs[index]
spkr_id = train_dataset.spkr_symmap[spkr_name]
path = random.choice([*set(train_dataset.paths_by_spkr_name[spkr_name])])
else:
path = train_dataset.paths[index]
spkr_name = cfg.get_spkr(path)
spkr_id = train_dataset.spkr_symmap[spkr_name]
if cfg.dataset.use_hdf5:
key = _get_hdf5_path(path)
text = torch.from_numpy(cfg.hdf5[key]["text"][:]).to(train_dataset.text_dtype)
resps = torch.from_numpy(cfg.hdf5[key]["audio"][:, :cfg.models.prom_levels]).to(torch.int16)
else:
text = torch.tensor([*map(train_dataset.phone_symmap.get, _get_phones(path))]).to(train_dataset.text_dtype)
resps = _load_quants(path)
noise = None
if task == "ns" or task == "sr":
# sample random noise
noise = train_dataset.sample_noise()
decode_to_file( noise, "./.noise.wav", device="cpu" )
# extend the noise to fill the target audio
noise = repeat_extend_audio(noise, resps.shape[0])
# create the input prompt by merging the target audio with the noise
proms = merge_audio(resps, noise, scale=[1, 0.125])
# set the target to just be the noise if
if task == "sr":
resps = noise
# prepend the task token
proms = torch.cat( [train_dataset.get_task_token(task), proms] )
# set the text prompt to empty to train without a guided text prompt
if random.random() < 0.5:
text = torch.tensor([1, 2]).to(train_dataset.text_dtype)
# target speech extraction
elif task == "tse":
# sample a random, clean, utterance for the target speaker
clean_proms = train_dataset.sample_prompts(spkr_name, ignore=path) if random.random() < cfg.dataset.random_utterance else resps
# sample a random, clean utterance from a different speaker
other_proms = train_dataset.sample_prompts(train_dataset.sample_speakers(ignore=[spkr_name]), ignore="")
# overlay the random speaker over the target audio
smallest_size = min(resps.shape[0], other_proms.shape[0])
if other_proms.shape[0] == smallest_size:
noisy_proms = merge_audio( resps[:smallest_size, :], other_proms )
noisy_proms = torch.cat( [ noisy_proms, resps[smallest_size:, :] ] )
else:
noisy_proms = merge_audio( resps, other_proms[:smallest_size, :] )
noisy_proms = torch.cat( [ noisy_proms, other_proms[smallest_size:, :] ] )
# stitch together the promps
proms = torch.cat( [clean_proms, train_dataset.get_task_token(task), noisy_proms] )
# set the text prompt to empty to train without a guided text prompt
if random.random() < 0.5:
text = torch.tensor([1, 2]).to(train_dataset.text_dtype)
decode_to_file( proms, "./.proms.wav", device="cpu" )
decode_to_file( resps, "./.resps.wav", device="cpu" )
if noise is not None:
decode_to_file( noise, "./.noise-fill.wav", device="cpu" )
"""