# todo: clean this mess up import copy import h5py import json import re import logging import numpy as np import os import random import torch import itertools from .config import cfg from .emb.qnt import trim, trim_random, repeat_extend_audio, concat_audio, merge_audio, decode_to_file, decode as decode_qnt, encode as encode_qnt, pad_codes_with_silence from .emb.g2p import encode as encode_phns from .utils.sampler import PoolSampler, OrderedSampler, BatchedOrderedSampler, RandomSampler from .utils.distributed import global_rank, local_rank, world_size, is_global_leader from .utils.io import torch_save, torch_load, json_read, json_write, json_stringify, json_parse from .utils import setup_logging from collections import defaultdict from functools import cache, cached_property from itertools import groupby, zip_longest from pathlib import Path from typing import Any from torch import Tensor from torch.utils.data import DataLoader, Dataset as _Dataset from torch.utils.data.distributed import DistributedSampler from torch.nn.utils.rnn import pad_sequence from tqdm.auto import tqdm # torch.multiprocessing.set_sharing_strategy("file_system") _logger = logging.getLogger(__name__) @cache def get_random_prompts( validation=False, min_length=0, tokenized=False ): duration_range = [ 5.5, 12.0 ] # to-do: pull from cfg.dataset.duration_range sentences = [ "The birch canoe slid on the smooth planks.", "Glue the sheet to the dark blue background.", "It's easy to tell the depth of a well.", "These days a chicken leg is a rare dish.", "Rice is often served in round bowls.", "The juice of lemons makes fine punch.", "The box was thrown beside the parked truck.", "The hogs were fed chopped corn and garbage.", "Four hours of steady work faced us.", "A large size in stockings is hard to sell.", "The boy was there when the sun rose.", "A rod is used to catch pink salmon.", "The source of the huge river is the clear spring.", "Kick the ball straight and follow through.", "Help the woman get back to her feet.", "A pot of tea helps to pass the evening.", "Smoky fires lack flame and heat.", "The soft cushion broke the man's fall.", "The salt breeze came across from the sea.", "The girl at the booth sold fifty bonds.", "The small pup gnawed a hole in the sock.", "The fish twisted and turned on the bent hook.", "Press the pants and sew a button on the vest.", "The swan dive was far short of perfect.", "The beauty of the view stunned the young boy.", "Two blue fish swam in the tank.", "Her purse was full of useless trash.", "The colt reared and threw the tall rider.", "It snowed, rained, and hailed the same morning.", "Read verse out loud for pleasure.", ] # Pull from validation dataset if existing + requested if validation and cfg.dataset.validation: paths = _load_paths(cfg.dataset.validation, type="validation", silent=True) paths = list(itertools.chain.from_iterable(paths.values())) for path in paths: duration = 0 text_string = "" if cfg.dataset.use_hdf5: key = _get_hdf5_path(path) metadata = { f'{k}': f'{v}' for k, v in cfg.hdf5[key].attrs.items() } metadata = process_artifact_metadata( { "metadata": metadata } ) text_string = metadata["text"] if "text" in metadata else "" duration = metadata['duration'] if "duration" in metadata else 0 else: _, metadata = _load_quants(path, return_metadata=True) metadata = process_artifact_metadata( { "metadata": metadata } ) text_string = metadata["text"] if "text" in metadata else "" duration = metadata['duration'] if "duration" in metadata else 0 if len( text_string ) < min_length or not (duration_range[0] <= duration and duration <= duration_range[1]): continue sentences.append( text_string ) # tokenize here because our harvard sentences need to be phonemized anyways if tokenized: return [ torch.tensor( tokenize( encode_phns( text ) ) ).to(dtype=torch.uint8) for text in sentences ] return sentences # samples a random text prompt def get_random_prompt( *args, **kwargs ): # Harvard sentences return random.choice(get_random_prompts( *args, **kwargs )) # fold into a typical LLM sequence (one embedding rather than split embeddings) def fold_inputs( text_list = [], lang_list = [], task_list = [], tone_list = [], prom_list = [], resp_list = [], targ_list = [], ignore_index = None, sep = 3, stop = 3, config = None, quant_levels = None, ): if config is None: config = cfg.model def _create_mask(l, device): seq = torch.arange(max(l), device=device).unsqueeze(0) # (1 t) stop = torch.tensor(l, device=device).unsqueeze(1) # (b 1) return (seq < stop).float() # (b t) def list_to_tensor(x_list: list[Tensor], mask=True): l = list(map(len, x_list)) x = pad_sequence(x_list).t() if not mask: return x m = _create_mask(l, x_list[0].device) m = m.to(x) return x, m def process_prom_or_task(i, prom): if prom is None: return 0 if isinstance(prom, str): task = get_task_symmap()[f'<{input}>'] seq = torch.tensor([task_start + task], device=device, dtype=dtype) input_ids[i].append( seq ) input_ids[i].append( sep ) return seq.shape[0] + 1 # deinterleaved if quant_levels is not None: quant_level = quant_levels[i] if ignore_index is not None: seq = torch.tensor( [ ignore_index for _ in range( prom.shape[0] ) ], device=device, dtype=dtype) else: seq = prom[:, quant_level].to(device=device, dtype=dtype).clone() for idx, token in enumerate( seq ): token += prom_start + ( config.audio_tokens * quant_level ) # interleaved else: if ignore_index is not None: seq = torch.tensor( [ ignore_index for _ in range( prom.shape[0] * prom.shape[1] ) ], device=device, dtype=dtype) else: seq = prom.flatten().to(device=device, dtype=dtype) for idx, token in enumerate( seq ): token += prom_start + ( config.audio_tokens * ( idx % config.resp_levels ) ) input_ids[i].append( seq ) input_ids[i].append( sep ) return seq.shape[0] + 1 def generate_position_ids( length, sep=True ): return [ i for i in range( length + (1 if sep else 0) ) ] """ if quant_levels is not None: resps_list = [ [] if l == 0 else resp for l, resp in zip(quant_levels, resp_list) ] """ device = text_list[0].device dtype = torch.int64 batch_size = len(text_list) input_ids = [ [] for _ in range(batch_size) ] position_ids = [ [] for _ in range(batch_size) ] offset = 0 sep = torch.tensor([ sep ], device=device, dtype=dtype) stop = torch.tensor([ stop ], device=device, dtype=dtype) text_start = 0 text_end = text_start + config.text_tokens lang_start = text_end lang_end = lang_start + config.langs rvq_start = lang_end rvq_end = rvq_start + config.resp_levels prom_start = rvq_end prom_end = prom_start + config.audio_tokens * config.resp_levels task_start = prom_end task_end = task_start + config.tasks tone_start = task_end tone_end = tone_start + config.tones resp_start = tone_end resp_end = resp_start + config.audio_tokens * config.resp_levels # text tokens for i, text in enumerate(text_list): if isinstance(text, torch.Tensor): seq = text + text_start else: seq = torch.tensor([text_start + text], device=device, dtype=dtype) input_ids[i].append( seq ) input_ids[i].append( sep ) position_ids[i].append( generate_position_ids( seq.shape[0] ) ) # lang tokens for i, lang in enumerate(lang_list): if isinstance(lang, torch.Tensor): seq = lang + lang_start else: seq = torch.tensor([lang_start + lang], device=device, dtype=dtype) input_ids[i].append( seq ) input_ids[i].append( sep ) position_ids[i].append( generate_position_ids( seq.shape[0] ) ) # inject target quant_level if quant_levels is not None: for i, rvq in enumerate( quant_levels ): if isinstance(rvq, torch.Tensor): seq = rvq + rvq_start else: seq = torch.tensor([rvq_start + rvq], device=device, dtype=dtype) input_ids[i].append( seq ) input_ids[i].append( sep ) position_ids[i].append( generate_position_ids( seq.shape[0] ) ) # prom / task tokens for i, prom in enumerate(prom_list): # list of proms with a possible task token length = 0 if isinstance(prom, list): for p in prom: length += process_prom_or_task(i, p) # raw tensor else: length += process_prom_or_task(i, prom) position_ids[i].append( generate_position_ids( length, sep=False ) ) # tone tokens for i, tone in enumerate(tone_list): if isinstance(tone, torch.Tensor): seq = tone + tone_start else: seq = torch.tensor([tone_start + tone], device=device, dtype=dtype) input_ids[i].append( seq ) input_ids[i].append( sep ) position_ids[i].append( generate_position_ids( seq.shape[0] ) ) # resp tokens for i, resp in enumerate(resp_list): # deinterleaved if quant_levels is not None: # grab the previous rvq level quant_level = quant_levels[i] - 1 # way to signal we want to inference for rvq level 0 # without it, it's a random chance for any level to be selected again if quant_level < 0: continue else: # my shitcode keeps things as lists of tensors for each level, so this handles it because lists can't index by tuples if isinstance(resp, list): seq = resp[quant_level].to(device=device, dtype=dtype).clone() else: seq = resp[:, quant_level].to(device=device, dtype=dtype).clone() for idx, token in enumerate( seq ): token += resp_start + ( config.audio_tokens * quant_level ) input_ids[i].append( seq ) input_ids[i].append( stop ) position_ids[i].append( generate_position_ids( seq.shape[0] ) ) # interleaved else: seq = resp.flatten().to(device=device, dtype=dtype) for idx, token in enumerate( seq ): token += resp_start + ( config.audio_tokens * ( idx % config.resp_levels ) ) input_ids[i].append( seq ) input_ids[i].append( stop ) position_ids[i].append( generate_position_ids( seq.shape[0] ) ) # targ list for i, resp in enumerate(targ_list): # deinterleaved if quant_levels is not None: quant_level = quant_levels[i] seq = resp[:, quant_level].to(device=device, dtype=dtype) for idx, token in enumerate( seq ): token += resp_start + ( config.audio_tokens * quant_level ) input_ids[i].append( seq ) input_ids[i].append( stop ) position_ids[i].append( generate_position_ids( seq.shape[0] ) ) # interleaved else: seq = resp.flatten().to(device=device, dtype=dtype) for idx, token in enumerate( seq ): token += resp_start + ( config.audio_tokens * ( idx % config.resp_levels ) ) input_ids[i].append( seq ) input_ids[i].append( stop ) position_ids[i].append( generate_position_ids( seq.shape[0] ) ) for i, batch in enumerate(input_ids): input_ids[i] = torch.concat(input_ids[i], dim=-1).to(device=device, dtype=dtype) position_ids[i] = torch.concat([ torch.tensor(ids, device=device, dtype=dtype) for ids in position_ids[i] ], dim=-1) input_ids, attention_mask = list_to_tensor(input_ids) position_ids = list_to_tensor(position_ids, mask=False) return input_ids, attention_mask, position_ids # unfold from one unified token ID space to separate token spaces # to-do: unfold at a specific RVQ level instead if requested def unfold_outputs( output_ids, sep = 3, stop = 3, config = None, quant_levels = None, ): def bin_to_rvqs( tokens ): length = len(tokens) """ if length % config.resp_levels == 0: tokens = torch.tensor(tokens).reshape( config.resp_levels, length // config.resp_levels ).t() """ bins = [ [] for _ in range(config.resp_levels) ] for pos in range( length ): rvq = pos % config.resp_levels bins[rvq].append( tokens[pos] ) nearest = ( len(bins) // config.resp_levels ) * config.resp_levels bins = bins[:nearest] return torch.tensor(bins, device=device, dtype=dtype).t() if config is None: config = cfg.model device = output_ids.device dtype = torch.int64 batch_size = output_ids.shape[0] text_list = [ [] for _ in range(batch_size) ] rvq_list = [ [] for _ in range(batch_size) ] lang_list = [ [] for _ in range(batch_size) ] task_list = [ [] for _ in range(batch_size) ] tone_list = [ [] for _ in range(batch_size) ] prom_list = [ [] for _ in range(batch_size) ] resp_list = [ [] for _ in range(batch_size) ] text_start = 0 text_end = text_start + config.text_tokens lang_start = text_end lang_end = lang_start + config.langs rvq_start = lang_end rvq_end = rvq_start + config.resp_levels prom_start = rvq_end prom_end = prom_start + config.audio_tokens * config.resp_levels task_start = prom_end task_end = task_start + config.tasks tone_start = task_end tone_end = tone_start + config.tones resp_start = tone_end resp_end = resp_start + config.audio_tokens * config.resp_levels for i, batch in enumerate( output_ids ): # cringe logic to handle prefix resp for rvq levels > 0 # a better way is to observe if the rvq level increased should_flush = False flushed = False for idx, token in enumerate( batch ): id = token.item() if id == sep or id == stop: if should_flush and quant_levels is not None and quant_levels[i] > 0: resp_list[i] = [] should_flush = False flushed = True continue # text tokens if text_start <= id and id < text_end: text_list[i].append( (id - text_start) % config.text_tokens ) # lang tokens elif lang_start <= id and id < lang_end: lang_list[i].append( (id - lang_start) % config.langs ) # rvq levels elif rvq_start <= id and id < rvq_end: rvq_list[i].append( (id - rvq_start) % config.resp_levels ) # prom tokens elif prom_start <= id and id < prom_end: prom_list[i].append( (id - prom_start) % config.audio_tokens ) # task tokens elif task_start <= id and id < task_end: task_list[i].append( (id - task_start) % config.tasks ) # lang tokens elif tone_start <= id and id < tone_end: tone_list[i].append( (id - tone_start) % config.tones ) # resp tokens elif resp_start <= id and id < resp_end: resp_list[i].append( (id - resp_start) % config.audio_tokens ) if not flushed: should_flush = True if quant_levels is not None: prom_list[i] = torch.tensor(prom_list[i], device=device, dtype=dtype).t() resp_list[i] = torch.tensor(resp_list[i], device=device, dtype=dtype).t() else: prom_list[i] = bin_to_rvqs( prom_list[i] ) resp_list[i] = bin_to_rvqs( resp_list[i] ) text_list[i] = torch.tensor( text_list[i], device=device, dtype=dtype ) task_list[i] = torch.tensor( task_list[i], device=device, dtype=dtype ) lang_list[i] = torch.tensor( lang_list[i], device=device, dtype=dtype ) tone_list[i] = torch.tensor( tone_list[i], device=device, dtype=dtype ) return dict( text_list=text_list, prom_list=prom_list, resp_list=resp_list, task_list=task_list, lang_list=lang_list, tone_list=tone_list, ) # to-do: clean up this symmap mess def get_phone_symmap(): return cfg.tokenizer.get_vocab() def tokenize( phones ): if isinstance( phones, list ): phones = "".join( phones ) return cfg.tokenizer.encode( phones ) def get_lang_symmap(): return { "en": 0, "ja": 1, "de": 2, "fr": 3, } def get_tone_symmap(): return { "neutral": 0, } return symmap def get_task_symmap(): return { "": 0, "": 1, "": 2, "": 3, "": 4, "": 5, "": 6, "": 7, "": 8, "": 0, # fake "": 6, # fake "": 6, # fake } def _replace_file_extension(path, suffix): if not isinstance( path, Path ): path = Path(path) return (path.parent / path.name.split(".")[0]).with_suffix(suffix) def _get_quant_extension(): return ".dac" if cfg.audio_backend == "dac" else ".enc" def _get_phone_extension(): return ".json" # if cfg.audio_backend == "dac" else ".phn.txt" def _get_quant_path(path): return _replace_file_extension(path, _get_quant_extension()) def _get_phone_path(path): return _replace_file_extension(path, _get_phone_extension()) _durations_map = {} def _get_duration_map( type="training" ): return _durations_map[type] if type in _durations_map else {} def _load_paths(dataset, type="training", silent=not is_global_leader(), dataset_hash_key=None): if not dataset_hash_key: dataset_hash_key = cfg.dataset.hash_key(sorted(dataset)) cached_dir = cfg.cache_dir / dataset_hash_key cached_durations_path = cached_dir / f"durations[{type}].json" cached_paths_path = cached_dir / f"dataloader[{type}].json" # load the duration table first, since this is independent from the loaded paths if cached_durations_path.exists(): _durations_map[type] = json_read( cached_durations_path ) # load the cached valid paths (if we're requesting cache use) if cached_paths_path.exists() and cfg.dataset.cache: # to-do: automatic conversion between HDF5 formatted paths and on-disk paths return json_read( cached_paths_path ) # deduce valid paths paths = { cfg.get_spkr( cfg.data_dir / data_dir / "dummy" ): _load_paths_from_metadata( data_dir, type=type, validate=cfg.dataset.validate and type == "training" ) for data_dir in tqdm(dataset, desc=f"Parsing dataset: {type}", disable=silent) } # and write if global leader (to avoid other processes writing to the same file at once) if is_global_leader(): if not cached_dir.exists(): cached_dir.mkdir(parents=True, exist_ok=True) json_write( _durations_map[type], cached_durations_path, truncate=True ) json_write( paths, cached_paths_path, truncate=True ) return paths def _load_paths_from_metadata(group_name, type="training", validate=False): data_dir = group_name if cfg.dataset.use_hdf5 else cfg.data_dir / group_name _fn = _get_hdf5_paths if cfg.dataset.use_hdf5 else _get_paths_of_extensions def key( id, entry=None ): return f"/{type}/{_get_hdf5_path(data_dir)}/{id}" if cfg.dataset.use_hdf5 else str(data_dir / id) metadata_path = cfg.metadata_dir / f'{group_name}.json' metadata = {} if cfg.dataset.use_metadata and metadata_path.exists(): #metadata = json.loads(open( metadata_path, "r", encoding="utf-8" ).read()) metadata = json_read( metadata_path ) if len(metadata) == 0: return _fn( data_dir, type if cfg.dataset.use_hdf5 else _get_quant_extension(), validate ) def _validate( id, entry ): phones = entry['phones'] if "phones" in entry else 0 duration = entry['duration'] if "duration" in entry else 0 #print( id, duration ) # add to duration bucket k = key(id, entry) if type not in _durations_map: _durations_map[type] = {} _durations_map[type][k] = duration if not validate: return True return cfg.dataset.min_duration <= duration and duration <= cfg.dataset.max_duration return [ key(id, entry) for id, entry in metadata.items() if _validate(id, entry) ] def _get_hdf5_path(path): # to-do: better validation return str(path) def _get_hdf5_paths( data_dir, type="training", validate=False ): data_dir = str(data_dir) key = f"/{type}/{_get_hdf5_path(data_dir)}" def _validate( id, entry ): phones = entry.attrs['phonemes'] duration = entry.attrs['duration'] if type not in _durations_map: _durations_map[type] = {} _durations_map[type][f"{key}/{id}"] = duration if not validate: return True return cfg.dataset.min_duration <= duration and duration <= cfg.dataset.max_duration return [ Path(f"{key}/{id}") for id, entry in cfg.hdf5[key].items() if _validate(id, entry) ] if key in cfg.hdf5 else [] def _get_paths_of_extensions( path, extensions=_get_quant_extension(), validate=False ): if isinstance(path, str): path = Path(path) return [ p for p in list(path.iterdir()) ] if path.exists() and path.is_dir() else [] def _load_quants(path, return_metadata=False) -> Tensor: qnt = np.load(_get_quant_path(path), allow_pickle=True)[()] if return_metadata: return torch.from_numpy(qnt["codes"].astype(int))[0][:, :].t().to(torch.int16), qnt["metadata"] return torch.from_numpy(qnt["codes"].astype(int))[0][:, :].t().to(torch.int16) # prune consecutive spaces def _cleanup_phones( phones, targets=[" "]): return [ p for i, p in enumerate(phones) if p not in targets or ( p in targets and p != phones[i-1] ) ] @cache def _get_phones(path): phone_path = _get_phone_path(path) quant_path = _get_quant_path(path) if phone_path.exists(): #metadata = json.loads(open(phone_path, "r", encoding="utf-8").read()) metadata = json_read(phone_path) elif quant_path.exists(): _, metadata = _load_quants( path, return_metadata=True ) else: raise Exception(f"Could not load phonemes: {path}") content = metadata["phonemes"] return "".join(content) def _interleaved_reorder(l, fn): groups = defaultdict(list) for e in l: groups[fn(e)].append(e) groups = {k: groups[k] for k in sorted(groups)} for interleaved in zip_longest(*groups.values()): for value in interleaved: if value is not None: yield value class Dataset(_Dataset): def __init__( self, phone_symmap=None, training=False, extra_paths_by_spkr_name: dict[str, list] = {}, ): super().__init__() self._head = None self.sampler = None self.paths = [] self.training = training self.dataset_type = "training" if self.training else "validation" self.dataset = sorted(cfg.dataset.training if self.training else cfg.dataset.validation) self.sampler_type = cfg.dataset.sample_type if self.dataset_type == "training" else "path" self.sampler_order = cfg.dataset.sample_order self.sampler_shuffle = cfg.dataset.sample_shuffle if self.dataset_type == "training" else True self.dataset_hash_key = cfg.dataset.hash_key(sorted(self.dataset)) # to-do: do not do validation if there's nothing in the validation # this just makes it be happy if len(self.dataset) == 0: self.dataset = cfg.dataset.training # hard error because I kept getting tricked by this myself if self.sampler_order == "duration" and self.sampler_type != "path": raise Exception(f'Requesting sample_type={self.sampler_type} with sample_order={self.sampler_order}, yet combination will not give expected results.') # dict of paths keyed by speaker names self.paths_by_spkr_name = _load_paths(self.dataset, self.dataset_type, dataset_hash_key=self.dataset_hash_key) # do it here due to the above self.duration = 0 self.duration_map = _get_duration_map( self.dataset_type ) self.duration_buckets = {} # cull speakers if they do not have enough utterances if cfg.dataset.min_utterances > 0: keys = list(self.paths_by_spkr_name.keys()) for key in keys: if len(self.paths_by_spkr_name[key]) < cfg.dataset.min_utterances: del self.paths_by_spkr_name[key] # flatten paths self.paths = list(itertools.chain.from_iterable(self.paths_by_spkr_name.values())) # split dataset accordingly per GPU if cfg.distributed and self.training: """ batches = len(self.paths) // world_size() start = batches * global_rank() end = batches * (global_rank() + 1) self.paths = self.paths[start:end] """ self.paths = [ path for i, path in enumerate(self.paths) if i % world_size() == 0 ] # recreate paths_by_spkr_name self.paths_by_spkr_name = {} for path in self.paths: name = cfg.get_spkr( Path(path) ) if name not in self.paths_by_spkr_name: self.paths_by_spkr_name[name] = [] self.paths_by_spkr_name[name].append( path ) # store in corresponding bucket for path in self.paths: duration = self.duration_map[path] self.duration += duration # only calc duration if we're going to order by duration if self.sampler_order != "duration": continue bucket = int(round(duration)) if bucket not in self.duration_buckets: self.duration_buckets[bucket] = [] self.duration_buckets[bucket].append( ( Path(path), duration ) ) # sort by duration if self.sampler_order == "duration": # ensure they're ordered self.duration_buckets = dict(sorted(self.duration_buckets.items())) flattened = {} # sort and interleave for bucket in self.duration_buckets: # sort by duration self.duration_buckets[bucket].sort( key=lambda x: x[1] ) # split to retain tuples flattened[bucket] = self.duration_buckets[bucket] # replace with path flattened[bucket] = [ x[0] for x in flattened[bucket] ] # flatten by paths flattened[bucket] = [*_interleaved_reorder(flattened[bucket], self.get_speaker)] # flatten paths self.paths = list(itertools.chain.from_iterable(flattened.values())) elif self.sampler_order == "random": random.shuffle( self.paths ) else: # just interleave self.paths = [*_interleaved_reorder(self.paths, self.get_speaker)] # dict of speakers keyed by speaker group self.spkrs_by_spkr_group = {} for data_dir in self.dataset: spkr = cfg.get_spkr( data_dir / "dummy" ) spkr_group = cfg.get_spkr_group( data_dir / "dummy" ) if spkr not in self.paths_by_spkr_name or len(self.paths_by_spkr_name[spkr]) < cfg.dataset.min_utterances: continue if spkr_group not in self.spkrs_by_spkr_group: self.spkrs_by_spkr_group[spkr_group] = [] self.spkrs_by_spkr_group[spkr_group].append( spkr ) self.spkr_groups = list(self.spkrs_by_spkr_group.keys()) self.noise_paths = _load_paths(cfg.dataset.noise, "noise") self.noise_paths = list(itertools.chain.from_iterable(self.noise_paths.values())) self.phone_symmap = phone_symmap or self._get_phone_symmap() self.spkr_symmap = self._get_spkr_symmap() self.spkr_group_symmap = self._get_spkr_group_symmap() self.lang_symmap = self._get_lang_symmap() self.tone_symmap = self._get_tone_symmap() self.task_symmap = self._get_task_symmap() # grab IDs for bos, space, and eos for easy input creation later self.empty_text = [ cfg.tokenizer._bos_token, cfg.tokenizer.get_vocab()[" "], cfg.tokenizer._eos_token ] # have it fetch at training time if any is invalid, because the tokenizer obj might not have it easily fetchable ahead of itme # encoding before parallelizing things causes things to whine if self.empty_text[0] is None or self.empty_text[-1] is None: self.empty_text = None # assert len(self.phone_symmap) < 256, "Unique token count should be [0,255] to fit within uint8" self.text_dtype = torch.uint8 if len(self.phone_symmap) < 256 else torch.int16 if len(self.paths) == 0: raise ValueError(f"No valid path is found for {self.dataset_type}") if self.sampler_type == "path" and self.training: if self.sampler_order == "duration" and cfg.dataset.sample_max_duration_batch > 0: self.sampler = BatchedOrderedSampler( self.duration_buckets if not self.sampler_state_dict_path.exists() else {}, # pass nothing if we're just going to load from a state anyways max_duration=cfg.dataset.sample_max_duration_batch, max_batch_size=cfg.hyperparameters.batch_size if self.training else cfg.evaluation.batch_size, shuffle=self.sampler_shuffle, ) else: self.sampler = OrderedSampler( len(self) ) if not self.sampler_shuffle else RandomSampler( len(self) ) self.samplers = {} self.spkr_samplers = {} else: self.sampler = RandomSampler( len(self) ) self.samplers = { name: PoolSampler( paths, keep_all=True, shuffle=self.sampler_shuffle ) for name, paths in self.paths_by_spkr_name.items() } self.spkr_samplers = { name: PoolSampler( [*set(speakers)], keep_all=True, shuffle=self.sampler_shuffle ) for name, speakers in self.spkrs_by_spkr_group.items() } # dereference buckets self.duration_map = None self.duration_buckets = None self.load_state_dict() @cached_property def sampler_state_dict_path(self): return cfg.ckpt_dir / (cfg.lora.full_name if cfg.lora is not None else cfg.model.full_name) / f"sampler.{self.sampler_type}.rank{global_rank()}.pt" def get_speaker(self, path): if isinstance(path, str): path = Path(path) res = cfg.get_spkr(path) return res def get_speaker_group(self, path): if isinstance(path, str): path = Path(path) res = cfg.get_spkr_group(path) return res # this isn't really necessary since our data/metadata contains markers for languages, but this is still in in-case it's needed to force a language setting (for example, whisperX's lang isn't that accurate at times) def get_language(self, speaker_group, lang="en"): for k, v in cfg.dataset.speaker_languages.items(): if speaker_group in v: lang = k break return lang.lower() @cached_property def spkrs(self): return sorted({self.get_speaker(path) for path in self.paths}) @cached_property def tasks(self): return cfg.dataset.tasks_list # ["tts", "tts", "ns", "sr", "tse", "tts", "tts"] # , "cse", "nse" def save_state_dict(self, path = None): if path is None: path = self.sampler_state_dict_path if not path.parent.exists(): path.parent.mkdir(parents=True, exist_ok=True) if self.sampler_type == "path": state_dict = self.sampler.get_state() else: state_dict = { "samplers": { name: sampler.get_state() for name, sampler in self.samplers.items() }, "spkr_samplers": { name: sampler.get_state() for name, sampler in self.spkr_samplers.items() }, } if "dataset_hash_key" not in state_dict: state_dict["dataset_hash_key"] = self.dataset_hash_key torch_save(state_dict, path) def load_state_dict(self, path = None): if not self.training: return if path is None: path = self.sampler_state_dict_path if not path.exists(): return state_dict = torch_load(path) if "dataset_hash_key" in state_dict: if self.dataset_hash_key != state_dict["dataset_hash_key"]: _logger.warning(f'Mismatched dataset hash key for {self.dataset_type} dataloader, ignoring loading of state dict.') return if self.sampler_type == "path": state_dict = self.sampler.set_state(state_dict) else: for name, sampler in state_dict["samplers"].items(): if name not in self.samplers: continue self.samplers[name].set_state( sampler ) for name, sampler in state_dict["spkr_samplers"].items(): if name not in self.spkr_samplers: continue self.spkr_samplers[name].set_state( sampler ) def _get_phone_symmap(self): return get_phone_symmap() def _get_spkr_symmap(self): return {s: i for i, s in enumerate(self.spkrs)} def _get_spkr_group_symmap(self): return {s: i for i, s in enumerate(self.spkr_groups)} def _get_lang_symmap(self): return get_lang_symmap() def _get_tone_symmap(self): return get_tone_symmap() def _get_task_symmap(self): return get_task_symmap() def sample_noise(self): path = random.choice(self.noise_paths) if cfg.dataset.use_hdf5: key = _get_hdf5_path(path) qnt = torch.from_numpy(cfg.hdf5[key]["audio"][:, :]).to(torch.int16) else: qnt = _load_quants(path, return_metadata=False) return qnt def sample_speakers(self, ignore=[]): choices = set(self.spkrs) - set(ignore) return random.choice([*choices]) def sample_utterance(self, spkr_name, ignore=[]): choices = [*(set(self.paths_by_spkr_name[spkr_name]) - set(ignore))] if len(choices) == 0: return None, None, None path = random.choice(choices) if cfg.dataset.use_hdf5: key = _get_hdf5_path(path) if key not in cfg.hdf5: raise RuntimeError(f'Key of Path ({path}) not in HDF5: {key}') #metadata = cfg.hdf5[key].attrs metadata = { f'{k}': f'{v}' for k, v in cfg.hdf5[key].attrs.items() } text = cfg.hdf5[key]["text"][:] resps = cfg.hdf5[key]["audio"][:, :] text = torch.from_numpy(text).to(self.text_dtype) resps = torch.from_numpy(resps).to(torch.int16) """ lang = metadata["language"] if "language" in metadata else None tone = metadata["tone"] if "tone" in metadata else None """ else: resps, metadata = _load_quants(path, return_metadata=True) text = torch.tensor(tokenize( metadata["phonemes"] )).to(self.text_dtype) """ lang = metadata["language"] if "language" in metadata else None tone = metadata["tone"] if "tone" in metadata else None """ return path, text, resps # icky slop def get_similar_utterance(self, path, offset=None ): if offset is None: offset = cfg.dataset.prompt_similar_top_k_offset reference = path.name if cfg.dataset.use_hdf5: root = Path( *path.parts[:-1] ) path = Path( *path.parts[2:-1] ) else: root = Path( *path.parts[:-1] ) path = Path(*path.parts[len(cfg.data_dir.parts):-1]) metadata = json_read( cfg.metadata_dir / path.with_suffix(".json"), default={} ) if reference not in metadata: return None reference_metadata = metadata[reference] if "similar" not in reference_metadata: return None if len(reference_metadata["similar"]) >= offset: offset = 0 metadata_keys = list(metadata.keys()) if cfg.dataset.prompt_similar_top_k > 1: indices = reference_metadata["similar"][offset:offset+cfg.dataset.prompt_similar_top_k] index = random.choice( indices ) else: index = reference_metadata["similar"][offset] name = metadata_keys[index] return root / name def sample_prompts(self, spkr_name, reference, should_trim=True): if not cfg.dataset.prompt_duration_range or cfg.dataset.prompt_duration_range[-1] == 0: return None prom_list = [] choices = set(self.paths_by_spkr_name[spkr_name]) - {reference} choices = [*choices] # no other utterances, it'd make more sense to prune speakers with only one utterance in the validation step if len(choices) == 0: choices = [*set(self.paths_by_spkr_name[spkr_name])] """ raise ValueError( f"Failed to find another different utterance for {spkr_name}." ) """ prom_length = 0 duration_lo, duration_hi = cfg.dataset.prompt_duration_range trim_length = int(random.uniform(duration_lo, duration_hi) * cfg.dataset.frames_per_second) if trim else 0 for _ in range(cfg.dataset.prompt_max_samples): if reference is not None: # yuck path = None if random.random() < cfg.dataset.prompt_similar_p: path = self.get_similar_utterance( reference, offset = len(prom_list) ) if not path: path = random.choice(choices) else: path = random.choice(choices) if cfg.dataset.use_hdf5: key = _get_hdf5_path(path) qnt = torch.from_numpy(cfg.hdf5[key]["audio"][:, :]).to(torch.int16) else: qnt = _load_quants(path, return_metadata=False) if 0 < trim_length and trim_length < qnt.shape[0]: qnt = trim( qnt, trim_length, reencode=cfg.dataset.reencode_on_concat, device=cfg.dataset.reencode_device ) prom_list.append(qnt) prom_length += qnt.shape[0] if prom_length >= trim_length: break # might be better to decode => concat waveforms with silence in between => reencode # as you technically can't just append encodec sequences together like this without issues prom = concat_audio( *prom_list, reencode=cfg.dataset.reencode_on_concat, device=cfg.dataset.reencode_device ) if 0 < trim_length and trim_length < prom.shape[0]: prom = trim( prom, trim_length, reencode=cfg.dataset.reencode_on_concat, device=cfg.dataset.reencode_device ) return prom def __getitem__(self, index): if self.empty_text is None: self.empty_text = tokenize(" ") bos_id, space_id, eos_id = self.empty_text if self.sampler_type == "group": spkr_group = self.spkr_groups[index] #spkr_group_id = self.spkr_group_symmap[spkr_group] spkr_name = self.spkr_samplers[spkr_group].sample() spkr_id = self.spkr_symmap[spkr_name] path = self.samplers[spkr_name].sample() elif self.sampler_type == "speaker": spkr_name = self.spkrs[index] spkr_id = self.spkr_symmap[spkr_name] path = self.samplers[spkr_name].sample() spkr_group = self.get_speaker_group(path) #spkr_group_id = self.spkr_group_symmap[spkr_group] else: path = self.paths[index] spkr_name = self.get_speaker(path) spkr_id = self.spkr_symmap[spkr_name] spkr_group = self.get_speaker_group(path) #spkr_group_id = self.spkr_group_symmap[spkr_group] if not isinstance( path, Path ): path = Path( path ) if cfg.dataset.use_hdf5: key = _get_hdf5_path(path) if key not in cfg.hdf5: raise RuntimeError(f'Key of Path ({path}) not in HDF5: {key}') # I need to do some weird coersion to a normal dict because it'll bitch about Hdf5 objects not being pickleable in worker processes metadata = { f'{k}': f'{v}' for k, v in cfg.hdf5[key].attrs.items() } text = cfg.hdf5[key]["text"][:] resps = cfg.hdf5[key]["audio"][:, :] text = torch.from_numpy(text).to(self.text_dtype) resps = torch.from_numpy(resps).to(torch.int16) lang = metadata["language"] if "language" in metadata else None tone = metadata["tone"] if "tone" in metadata else None text_string = metadata["text"] if "text" in metadata else None if cfg.dataset.retokenize_text and "phonemes" in metadata: text = torch.tensor(tokenize( metadata["phonemes"] )).to(self.text_dtype) else: resps, metadata = _load_quants(path, return_metadata=True) text = torch.tensor(tokenize( metadata["phonemes"] )).to(self.text_dtype) lang = metadata["language"] if "language" in metadata else None tone = metadata["tone"] if "tone" in metadata else None text_string = metadata["text"] if "text" in metadata else None lang = self.get_language(spkr_group) if not lang else lang.lower() if not tone: tone = "neutral" lang = torch.tensor([self.lang_symmap[lang]]).to(torch.uint8) tone = torch.tensor([self.tone_symmap[tone]]).to(torch.uint8) # a bool to easily experiment with two mindsets later naive = cfg.experimental # append additional prompts in an attempt to artifically increase lengths / offer new data if cfg.dataset.resps_max_samples > 1 and random.random() < cfg.dataset.resps_append_p: ignore_paths = [] for _ in range( 1, cfg.dataset.resps_max_samples ): path, txt, qnt = self.sample_utterance(spkr_name, ignore=ignore_paths) ignore_paths.append(path) # [original text][new text] if naive: text = torch.concat([ text, txt ]) # [original text] [new text] # removes the original text's , includes a space, and remove the new text's else: text = torch.concat([ text[:-1], torch.tensor([self.phone_symmap[" "]]).to(torch.int16), txt[1:] ]) # might be better to decode => concat waveforms with silence in between => reencode # as you technically can't just append encodec sequences together like this without issues resps = concat_audio( resps, qnt, reencode=cfg.dataset.reencode_on_concat, device=cfg.dataset.reencode_device ) task = random.choice(self.tasks) if f'<{task}>' not in self.task_symmap: raise Exception(f'Task not defined: {task}') # Base TTS ( => ) if task == "tts": proms = self.sample_prompts(spkr_name, reference=path) if cfg.dataset.prompt_inject_noise: # sample random noise noise = self.sample_noise() # extend the noise to fill the target audio noise = repeat_extend_audio(noise, proms.shape[0]) # create the input prompt by merging the target audio with the noise proms = merge_audio( proms, noise, scale=[1, cfg.dataset.noise_scale], device=cfg.dataset.reencode_device ) # VALL-E Continuous ( => ) # (this could just be sampled as , includes a space, and remove the new text's else: text = torch.concat([ text[:-1], torch.tensor([space_id]).to(torch.int16), txt[1:] ]) # set prompt as initial response proms = resps # set target as newly sampled response resps = qnt # inject task token proms = [ proms, task, ] # Base STT ( => ) elif task == "stt": proms = [ task ] # Duration prediction ( => len()) elif task == "len": proms = self.sample_prompts(spkr_name, reference=path) # noise suppression (? => ) # speech removal (? => ) elif task == "ns" or task == "sr": # sample random noise noise = self.sample_noise() # extend the noise to fill the target audio noise = repeat_extend_audio(noise, resps.shape[0]) # create the input prompt by merging the target audio with the noise proms = merge_audio( resps, noise, scale=[1, cfg.dataset.noise_scale], device=cfg.dataset.reencode_device ) # set the text prompt to empty to train without a guided text prompt if random.random() < 0.5: text = None # inject task token proms = [ task, proms ] # set the target to just be the noise if if task == "sr": resps = noise # target speech extraction ( => ) elif task == "tse": # sample a prompt proms = self.sample_prompts(spkr_name, reference=path) # sample another speaker _, __, other_resps = self.sample_utterance(self.sample_speakers(ignore=[spkr_name])) # overlay the random speaker over the target audio other_resps = merge_audio( resps, other_resps, scale=[1, random.uniform(0.5, 0.75)], device=cfg.dataset.reencode_device ) # set the text prompt to empty to train without a guided text prompt if random.random() < 0.5: text = None # stitch together the proms proms = [ proms, task, other_resps, ] # clean speech editing elif task == "cse" or task == "nse": # speech editing would require higher quality transcription data (phoneme level/word level) unfortunately # as I need to get a good clean point to trim into # instead we'll just sample a bunch of utterances samples = [] for _ in range( 4 ): sampled = self.sample_utterance(spkr_name, ignore=[s[0] for s in samples]) samples.append( sampled ) pre_text, mid_text, post_text, edit_text = [ s[1][1:-1] for s in samples ] pre_prom, mid_prom, post_prom, edit_prom = [ s[2] for s in samples ] # randomly drop out pre if random.random() < 0.125: pre_text = None pre_prom = None # randomly drop out post elif random.random() < 0.125: post_text = None post_prom = None # create new text text = concat_audio( torch.tensor( [ bos_id ] ).to(dtype=self.text_dtype), # pre_text, None if pre_text is None else torch.tensor( [ space_id ] ).to(dtype=self.text_dtype), # " " edit_text, None if post_text is None else torch.tensor( [ space_id ] ).to(dtype=self.text_dtype), # " " post_text, torch.tensor( [ eos_id ] ).to(dtype=self.text_dtype), # reencode=False, ) if task == "nse": # sample random noise noise = self.sample_noise() # it might be better to extend the noise to the sum of the pre+mid+post or pre+edit+post to keep the noise truly coherent # but it's noise, it's supposed to be random def noise_proms( p ): # ignore if we turned it off if p is None: return None # extend the noise to fill the target audio n = repeat_extend_audio(noise, p.shape[0]) # merge the noise over the utterance return merge_audio(p, n, scale=[1, cfg.dataset.noise_scale], device=cfg.dataset.reencode_device) # apply noise to all pieces pre_prom = noise_proms( pre_prom ) mid_prom = noise_proms( mid_prom ) post_prom = noise_proms( post_prom ) edit_prom = noise_proms( edit_prom ) # create new prom proms = [ pre_prom, "soe", "mask" if task == "cse" else mid_prom, "eoe", post_prom, ] # create new resp resps = concat_audio( pre_prom, edit_prom, post_prom, reencode=cfg.dataset.reencode_on_concat, device=cfg.dataset.reencode_device, ) else: raise Exception(f'Undefined task: {task}') if text is None: text = torch.tensor([bos_id, eos_id]).to(self.text_dtype) # pad the target with silence if random.random() < cfg.dataset.resps_pad_silence_p: resps = pad_codes_with_silence( resps ) return dict( index=index, path=Path(path), spkr_name=spkr_name, spkr_id=spkr_id, task=task, lang=lang, tone=tone, text=text, proms=proms, resps=resps, metadata=metadata, ) def head_(self, n): self._head = n def training_(self, value): self.training = value def index(self): return self.sampler.index() if self.sampler is not None else -1 def __len__(self): if self.sampler_type == "group": return min(len(self.spkr_groups), self._head or len(self.spkr_groups)) if self.sampler_type == "speaker": return min(len(self.spkrs), self._head or len(self.spkrs)) return min(len(self.paths), self._head or len(self.paths)) def collate_fn(samples: list[dict]): batch: dict[str, Any] = {k: [s[k] for s in samples] for k in samples[0]} return batch def _seed_worker(worker_id): worker_seed = torch.initial_seed() % 2**32 np.random.seed(worker_seed) random.seed(worker_seed) def _create_dataloader(dataset, training): kwargs = dict( shuffle=not training, batch_size=cfg.hyperparameters.batch_size if training else cfg.evaluation.batch_size, drop_last=training, sampler=dataset.sampler if training else None, ) if not isinstance(dataset.sampler, BatchedOrderedSampler) else dict( batch_sampler=dataset.sampler, ) return DataLoader( dataset=dataset, num_workers=cfg.dataset.workers, collate_fn=collate_fn, persistent_workers=cfg.dataset.workers > 1, pin_memory=False, worker_init_fn=_seed_worker, **kwargs, ) def create_datasets(): train_dataset = Dataset( training=True ) val_dataset = Dataset( phone_symmap=train_dataset.phone_symmap, training=False ) return train_dataset, val_dataset def create_train_dataloader(): train_dataset = Dataset( training=True ) train_dl = _create_dataloader(train_dataset, training=True) _logger.info(str(train_dataset.phone_symmap)) _logger.info(str(train_dataset.spkr_symmap)) _logger.info(str(train_dataset.spkr_group_symmap)) _logger.info(f"#samples (train): {len(train_dataset)}.") _logger.info(f"#duration (train): {str(train_dataset.duration)}.") # remove duration map (it gets bloated) _durations_map = {} return train_dl def create_val_dataloader(): val_dataset = Dataset( training=False ) val_dl = _create_dataloader(val_dataset, training=False) _logger.info(str(val_dataset.phone_symmap)) _logger.info(str(val_dataset.spkr_symmap)) _logger.info(str(val_dataset.spkr_group_symmap)) _logger.info(f"#samples (val): {len(val_dataset)}.") _logger.info(f"#duration (val): {str(val_dataset.duration)}.") # remove duration map (it gets bloated) _durations_map = {} return val_dl # to-do, use the above two, then create the subtrain dataset def create_train_val_dataloader(): train_dataset, val_dataset = create_datasets() train_dl = _create_dataloader(train_dataset, training=True) val_dl = _create_dataloader(val_dataset, training=False) _logger.info(str(train_dataset.phone_symmap)) _logger.info(str(train_dataset.spkr_symmap)) _logger.info(str(train_dataset.spkr_group_symmap)) _logger.info(f"#samples (train): {len(train_dataset)}.") _logger.info(f"#samples (val): {len(val_dataset)}.") _logger.info(f"#duration (train): {str(train_dataset.duration)}.") _logger.info(f"#duration (val): {str(val_dataset.duration)}.") # remove duration map (it gets bloated) _durations_map = {} return train_dl, val_dl # parse metadata from an numpy file (.enc/.dac) and validate it def process_artifact_metadata( artifact ): metadata = {} # text transcription (just in case) if "text" in artifact["metadata"]: metadata["text"] = artifact["metadata"]["text"] # phonemization of text transcription (just in case) if "phonemes" in artifact["metadata"]: metadata["phonemes"] = artifact["metadata"]["phonemes"] # language for sampling / input creation if "language" in artifact["metadata"]: metadata["language"] = artifact["metadata"]["language"] # top-k similar utterances for this utternace if "similar" in artifact["metadata"]: metadata["similar"] = artifact["metadata"]["similar"] # duration for use of culling / sorting dataset if "duration" in artifact["metadata"]: metadata["duration"] = float(artifact["metadata"]["duration"]) # derive duration from sample count / sample rate elif "original_length" in artifact["metadata"] and "sample_rate" in artifact["metadata"]: metadata["duration"] = artifact["metadata"]["original_length"] / artifact["metadata"]["sample_rate"] # rephonemize if required if "phonemes" not in metadata and "text" in metadata: metadata["phonemes"] = encode_phns( metadata["text"], language=metadata["language"] if "language" in metadata["language"] else "en" ) # clean up phonemes from espeak # for example: Sonnenküste Update => zˈɔnənkˌystə (en)ˈʌpdeɪt(de) # to-do: regex replace /([a-z]{2})/ to "" if "phonemes" in metadata: metadata["phonemes"] = metadata["phonemes"].replace("(en)", "") if "language" in metadata: metadata["phonemes"] = metadata["phonemes"].replace(f"({metadata['language']})", "") metadata["phonemes"] = re.sub(r'\([a-z]{2}\)', "", metadata["phonemes"]) return metadata # yucky, but I would like to have the LibriTTS-R utterances remapped to their LibriSpeech counterpart # to-do: allow this to be adjusted without having to regenerate metadata / HDF5 by remapping name during dataloader creation def remap_speaker_name( name ): # commented out because I don't want the LibriSpeech portion of the dataset to get added """ if "LibriTTS-R" in speaker_name: name = name.replace("LibriTTS-R", "LibriVox") """ return name # parse dataset into better to sample metadata def create_dataset_metadata( skip_existing=False ): symmap = get_phone_symmap() root = str(cfg.data_dir) metadata_root = str(cfg.metadata_dir) cfg.metadata_dir.mkdir(parents=True, exist_ok=True) def add( dir, type="training", audios=True, texts=True ): name = str(dir) name = name.replace(root, "") speaker_name = remap_speaker_name( name ) metadata_path = Path(f"{metadata_root}/{speaker_name}.json") metadata_path.parents[0].mkdir(parents=True, exist_ok=True) metadata = json_read( metadata_path, default={} ) if not os.path.isdir(f'{root}/{name}/'): return files = os.listdir(f'{root}/{name}/') # grab IDs for every file ids = { file.replace(_get_quant_extension(), "").replace(_get_phone_extension(), "") for file in files } wrote = False for id in tqdm(ids, desc=f"Processing {name}", disable=True): try: quant_path = Path(f'{root}/{name}/{id}{_get_quant_extension()}') if audios and not quant_path.exists(): continue key = f'{type}/{speaker_name}/{id}' if skip_existing and id in metadata: continue wrote = True if id not in metadata: metadata[id] = {} utterance_metadata = {} if audios: artifact = np.load(quant_path, allow_pickle=True)[()] qnt = torch.from_numpy(artifact["codes"].astype(int))[0].t().to(dtype=torch.int16) utterance_metadata = process_artifact_metadata( artifact ) # to-do: derive duration from codes if duration is malformed because this happened to me with LibriTTS-R utterance_metadata["duration"] = qnt.shape[0] / cfg.dataset.frames_per_second for k, v in utterance_metadata.items(): metadata[id][k] = v except Exception as e: tqdm.write(f'Error while processing {id}: {e}') if wrote: json_write( metadata, metadata_path ) # training for data_dir in tqdm(sorted(cfg.dataset.training), desc="Processing Training"): add( data_dir, type="training" ) # validation for data_dir in tqdm(sorted(cfg.dataset.validation), desc='Processing Validation'): add( data_dir, type="validation" ) # noise for data_dir in tqdm(sorted(cfg.dataset.noise), desc='Processing Noise'): add( data_dir, type="noise", texts=False ) # parse yaml to create an hdf5 file def create_dataset_hdf5( skip_existing=True ): cfg.dataset.use_hdf5 = True cfg.load_hdf5(write=True) hf = cfg.hdf5 symmap = get_phone_symmap() root = str(cfg.data_dir) metadata_root = str(cfg.metadata_dir) def add( dir, type="training", audios=True, texts=True, verbose=False ): name = str(dir) name = name.replace(root, "") speaker_name = remap_speaker_name( name ) metadata_path = Path(f"{metadata_root}/{speaker_name}.json") metadata_path.parents[0].mkdir(parents=True, exist_ok=True) metadata = json_read(metadata_path, default={}) if not os.path.isdir(f'{root}/{name}/'): return files = os.listdir(f'{root}/{name}/') # grab IDs for every file ids = { file.replace(_get_quant_extension(), "").replace(_get_phone_extension(), "") for file in files } """ # rephonemizes if you fuck up and use and old tokenizer... for id, entry in tqdm(metadata.items(), desc=f"Processing {name}"): key = f'{type}/{speaker_name}/{id}' if key not in hf: continue group = hf[key] if "phonemes" not in entry: continue if "text" not in group: continue txt = entry["phonemes"] phn = "".join(txt) phn = cfg.tokenizer.encode(phn) phn = np.array(phn).astype(np.uint8) del group["text"] group.create_dataset('text', data=phn, compression='lzf') """ for id in tqdm(ids, desc=f"Processing {name}", disable=not verbose): try: quant_exists = os.path.exists(f'{root}/{name}/{id}{_get_quant_extension()}') if audios else True text_exists = os.path.exists(f'{root}/{name}/{id}{_get_phone_extension()}') if texts else True if not quant_exists: continue key = f'{type}/{speaker_name}/{id}' if skip_existing and key in hf: continue group = hf.create_group(key) if key not in hf else hf[key] if id not in metadata: metadata[id] = {} utterance_metadata = {} # audio if audios: artifact = np.load(f'{root}/{name}/{id}{_get_quant_extension()}', allow_pickle=True)[()] qnt = torch.from_numpy(artifact["codes"].astype(int))[0].t().to(dtype=torch.int16) utterance_metadata = process_artifact_metadata( artifact ) if "audio" not in group: group.create_dataset('audio', data=qnt.numpy().astype(np.int16), compression='lzf') # text # this is a relic from when I did have the quantized audio and phoneme transcription separate # to-do: ensure I can remove this block if texts: if not utterance_metadata and text_exists: utterance_metadata = json_read(f'{root}/{name}/{id}{_get_phone_extension()}') phn = "".join(utterance_metadata["phonemes"]) phn = cfg.tokenizer.encode(phn) phn = np.array(phn).astype(np.uint8) if "text" not in group: group.create_dataset('text', data=phn, compression='lzf') for k, v in utterance_metadata.items(): group.attrs[k] = v metadata[id][k] = v except Exception as e: tqdm.write(f'Error while processing {id}: {e}') json_write( metadata, metadata_path ) # training for data_dir in tqdm(cfg.dataset.training, desc="Processing Training"): add( data_dir, type="training" ) # validation for data_dir in tqdm(cfg.dataset.validation, desc='Processing Validation'): add( data_dir, type="validation" ) # noise for data_dir in tqdm(cfg.dataset.noise, desc='Processing Noise'): add( data_dir, type="noise", texts=False ) # write symmap if "symmap" in hf: del hf['symmap'] hf.create_dataset('symmap', data=json_stringify(symmap)) hf.close() if __name__ == "__main__": import argparse parser = argparse.ArgumentParser("Save trained model to path.") parser.add_argument("--action", type=str) parser.add_argument("--tasks", type=str) args, unknown = parser.parse_known_args() task = args.action setup_logging() cfg.dataset.workers = 1 if args.action == "hdf5": create_dataset_hdf5() elif args.action == "list-dataset": dataset = [] for group in os.listdir(cfg.data_dir): for name in os.listdir(cfg.data_dir / group): if len(os.listdir(cfg.data_dir / group / name)) == 0: continue dataset.append(f'{group}/{name}') _logger.info(json_stringify(dataset)) elif args.action == "metadata": create_dataset_metadata() elif args.action == "sample": train_dl, val_dl = create_train_val_dataloader() samples = { "training": [ next(iter(train_dl)), next(iter(train_dl)) ], #"evaluation": [ next(iter(subtrain_dl)), next(iter(subtrain_dl)) ], "validation": [ next(iter(val_dl)), next(iter(val_dl)) ], } Path("./data/sample-test/").mkdir(parents=True, exist_ok=True) for k, v in samples.items(): for i in range(len(v)): for j in tqdm(range(len(v[i]['proms'])), desc="Decoding..."): """ """ try: decode_to_file( v[i]['proms'][j], f"./data/sample-test/{k}.{i}.{j}.proms.wav", device="cpu" ) except Exception as e: _logger.info(f"Error while decoding prom {k}.{i}.{j}.wav: {str(e)}") try: decode_to_file( v[i]['resps'][j], f"./data/sample-test/{k}.{i}.{j}.resps.wav", device="cpu" ) except Exception as e: _logger.info(f"Error while decoding resp {k}.{i}.{j}.wav: {str(e)}") #v[i]['proms'][j] = v[i]['proms'][j].shape #v[i]['resps'][j] = v[i]['resps'][j].shape for k, v in samples.items(): for i in range(len(v)): _logger.info(f'{k}[{i}]: {v[i]}') elif args.action == "validate": train_dl, subtrain_dl, val_dl = create_train_val_dataloader() dataset = train_dl.dataset missing = [] symmap = get_phone_symmap() for index in tqdm(range(len( dataset )), desc="Processing dataset..."): if dataset.sampler_type == "group": spkr_group = dataset.spkr_groups[index] #spkr_group_id = dataset.spkr_group_symmap[spkr_group] spkr_name = dataset.spkr_samplers[spkr_group].sample() spkr_id = dataset.spkr_symmap[spkr_name] path = dataset.samplers[spkr_name].sample() elif dataset.sampler_type == "speaker": spkr_name = dataset.spkrs[index] spkr_id = dataset.spkr_symmap[spkr_name] path = dataset.samplers[spkr_name].sample() spkr_group = dataset.get_speaker_group(path) #spkr_group_id = dataset.spkr_group_symmap[spkr_group] else: path = dataset.paths[index] spkr_name = dataset.get_speaker(path) spkr_id = dataset.spkr_symmap[spkr_name] spkr_group = dataset.get_speaker_group(path) #spkr_group_id = dataset.spkr_group_symmap[spkr_group] if cfg.dataset.use_hdf5: key = _get_hdf5_path(path) if key not in cfg.hdf5: continue metadata = { f'{k}': f'{v}' for k, v in cfg.hdf5[key].attrs.items() } else: _, metadata = _load_quants(path, return_metadata=True) phonemes = metadata["phonemes"] for i, phone in enumerate( phonemes ): if phone in symmap: continue if phone in missing: continue _logger.info( f"{path} | {phonemes}[{i}] | {phone}" ) missing.append( phone ) """ text = tokenize( phonemes )[1:-1] unk_token = tokenize("")[1] if unk_token in text: print( unk_token, text, phonemes ) for i, token in enumerate(text): if token != unk_token: continue phone = phonemes[i] if phone not in missing: _logger.info( f"{path} | {phonemes}[{i}] | {phone}" ) missing |= set([phone]) """ _logger.info( f"Missing tokens: {missing}" ) elif args.action == "tasks": index = 0 cfg.dataset.tasks_list = args.tasks.split(",") train_dl, subtrain_dl, val_dl = create_train_val_dataloader() batch = next(iter(train_dl)) for text, resps, proms, task in zip(batch["text"], batch["resps"], batch["proms"], batch["task"]): if task not in cfg.dataset.tasks_list: continue _logger.info( f'{text} {task} {cfg.model.resp_levels}') _logger.info( f'{proms.shape} {resps.shape}' ) tokens = 0 tokens += sum([ text.shape[0] for text in batch["text"] ]) tokens += sum([ resps.shape[0] for resps in batch["resps"] ]) _logger.info( f'{tokens}' ) decode_to_file( proms, f"./data/{task}.proms.wav", device="cpu" ) decode_to_file( resps, f"./data/{task}.resps.wav", device="cpu" ) break