# todo: clean this mess up import copy import h5py import json import logging import numpy as np import os import random import torch import itertools from .config import cfg from .emb.qnt import trim, trim_random, repeat_extend_audio, merge_audio, decode_to_file from .utils.sampler import PoolSampler, OrderedSampler, RandomSampler from .utils.distributed import global_rank, local_rank, world_size from collections import defaultdict from functools import cache, cached_property from itertools import groupby, zip_longest from pathlib import Path from typing import Any from torch import Tensor from torch.utils.data import DataLoader, Dataset as _Dataset from torch.utils.data.distributed import DistributedSampler from torch.nn.utils.rnn import pad_sequence from tqdm.auto import tqdm # torch.multiprocessing.set_sharing_strategy("file_system") _logger = logging.getLogger(__name__) # fold into a typical LLM sequence (one embedding rather than split embeddings) def fold_inputs( text_list = [], prom_list = [], resp_list = [], targ_list = [], ignore_index = None, sep = 3, stop = 3, text_tokens = 256, audio_tokens = 1024, audio_rvq_levels = cfg.model.max_levels, quant_levels = None, ): def _create_mask(l, device): seq = torch.arange(max(l), device=device).unsqueeze(0) # (1 t) stop = torch.tensor(l, device=device).unsqueeze(1) # (b 1) return (seq < stop).float() # (b t) def list_to_tensor(x_list: list[Tensor]): l = list(map(len, x_list)) x = pad_sequence(x_list).t() m = _create_mask(l, x_list[0].device) m = m.to(x) return x, m device = text_list[0].device batch_size = len(text_list) input_ids = [ [] for _ in range(batch_size) ] offset = 0 sep = torch.Tensor([ sep ]) stop = torch.Tensor([ stop ]) for i, text in enumerate(text_list): seq = text.to("cpu", dtype=torch.int64) input_ids[i].append( seq ) input_ids[i].append( sep ) offset = text_tokens # inject target quant_level if quant_levels is not None: for i, rvq in enumerate( quant_levels ): seq = torch.Tensor([offset + rvq]).to("cpu", dtype=torch.int64) input_ids[i].append( seq ) input_ids[i].append( sep ) offset = text_tokens + audio_rvq_levels for i, prom in enumerate(prom_list): # deinterleaved if quant_levels is not None: quant_level = quant_levels[i] if ignore_index is not None: seq = torch.Tensor( [ ignore_index for _ in range( prom.shape[0] ) ] ).to("cpu", dtype=torch.int64) else: seq = prom[:, quant_level].to("cpu", dtype=torch.int64) for idx, token in enumerate( seq ): token += offset + ( audio_tokens * quant_level ) # interleaved else: if ignore_index is not None: seq = torch.Tensor( [ ignore_index for _ in range( prom.shape[0] * prom.shape[1] ) ] ).to("cpu", dtype=torch.int64) else: seq = prom.flatten().to("cpu", dtype=torch.int64) for idx, token in enumerate( seq ): token += offset + ( audio_tokens * ( idx % audio_rvq_levels ) ) input_ids[i].append( seq ) input_ids[i].append( sep ) offset = text_tokens + audio_rvq_levels + (audio_tokens * audio_rvq_levels) for i, resp in enumerate(resp_list): # deinterleaved if quant_levels is not None: # grab the previous rvq level quant_level = quant_levels[i] - 1 # way to signal we want to inference for rvq level 0 # without it, it's a random chance for any level to be selected again if quant_level < 0: continue seq = sep else: # my shitcode keeps things as lists of tensors for each level, so this handles it because lists can't index by tuples if isinstance(resp, list): seq = resp[quant_level].to("cpu", dtype=torch.int64) else: seq = resp[:, quant_level].to("cpu", dtype=torch.int64) for idx, token in enumerate( seq ): token += offset + ( audio_tokens * quant_level ) input_ids[i].append( seq ) input_ids[i].append( stop ) # interleaved else: seq = resp.flatten().to("cpu", dtype=torch.int64) for idx, token in enumerate( seq ): token += offset + ( audio_tokens * ( idx % audio_rvq_levels ) ) input_ids[i].append( seq ) input_ids[i].append( stop ) for i, resp in enumerate(targ_list): # deinterleaved if quant_levels is not None: quant_level = quant_levels[i] seq = resp[:, quant_level].to("cpu", dtype=torch.int64) for idx, token in enumerate( seq ): token += offset + ( audio_tokens * quant_level ) input_ids[i].append( seq ) input_ids[i].append( stop ) # interleaved else: seq = resp.flatten().to("cpu", dtype=torch.int64) for idx, token in enumerate( seq ): token += offset + ( audio_tokens * ( idx % audio_rvq_levels ) ) input_ids[i].append( seq ) input_ids[i].append( stop ) for i, batch in enumerate(input_ids): input_ids[i] = torch.concat(input_ids[i], dim=-1).to(device=device, dtype=torch.int64) return list_to_tensor(input_ids) # unfold from one unified token ID space to separate token spaces # to-do: unfold at a specific RVQ level instead if requested def unfold_outputs( output_ids, sep = 3, stop = 3, text_tokens = 256, audio_tokens = 1024, audio_rvq_levels = cfg.model.max_levels, quant_levels = None, ): device = output_ids.device batch_size = output_ids.shape[0] text_list = [ [] for _ in range(batch_size) ] prom_list = [ [] for _ in range(batch_size) ] resp_list = [ [] for _ in range(batch_size) ] for i, batch in enumerate( output_ids ): # crigne logic to handle prefix resp for rvq levels > 0 # a better way is to observe if the rvq level increased should_flush = False flushed = False for idx, token in enumerate( batch ): id = token.item() if id == sep or id == stop: if should_flush and quant_levels is not None and quant_levels[i] > 0: resp_list[i] = [] should_flush = False flushed = True continue if 0 <= id and id < text_tokens: text_list[i].append( id ) elif text_tokens + audio_rvq_levels <= id and id < text_tokens + audio_rvq_levels + (audio_tokens * audio_rvq_levels): prom_list[i].append( (id - text_tokens - audio_rvq_levels) % audio_tokens ) elif text_tokens + audio_rvq_levels + (audio_tokens * audio_rvq_levels) <= id: resp_list[i].append( (id - text_tokens - audio_rvq_levels) % audio_tokens ) if not flushed: should_flush = True if quant_levels is not None: prom_list[i] = torch.Tensor(prom_list[i]).t().to(device=device, dtype=torch.int64) resp_list[i] = torch.Tensor(resp_list[i]).t().to(device=device, dtype=torch.int64) else: prom_len = len(prom_list[i]) if prom_len % audio_rvq_levels == 0 and False: prom_list[i] = torch.Tensor(prom_list[i]).reshape( audio_rvq_levels, prom_len // audio_rvq_levels ).t() else: bins = [ [] for _ in range(audio_rvq_levels) ] for pos in range( prom_len ): rvq = pos % audio_rvq_levels bins[rvq].append( prom_list[i][pos] ) nearest = ( len(bins) // audio_rvq_levels ) * audio_rvq_levels bins = bins[:nearest] prom_list[i] = torch.Tensor(bins).t().to(device=device, dtype=torch.int64) resp_len = len(resp_list[i]) if len(resp_list[i]) % audio_rvq_levels == 0 and False: resp_list[i] = torch.Tensor(resp_list[i]).reshape( audio_rvq_levels, resp_len // audio_rvq_levels ).t() else: bins = [ [] for _ in range(audio_rvq_levels) ] for pos in range( resp_len ): rvq = pos % audio_rvq_levels bins[rvq].append( resp_list[i][pos] ) nearest = ( len(bins) // audio_rvq_levels ) * audio_rvq_levels bins = bins[:nearest] resp_list[i] = torch.Tensor(bins).t().to(device=device, dtype=torch.int64) text_list[i] = torch.Tensor( text_list[i] ).to(device=device, dtype=torch.int64) return dict( text_list=text_list, prom_list=prom_list, resp_list=resp_list ) # to-do: clean up this symmap mess def get_phone_symmap(): return cfg.tokenizer.get_vocab() def tokenize( phones ): return cfg.tokenizer.encode( "".join(phones) ) def get_lang_symmap(): return { "en": 0, "ja": 1, } def get_tone_symmap(): return { "neutral": 0, } return symmap def get_task_symmap(): return { "": 0, "": 1, "": 2, "": 3, "": 4, "": 5, "": 6, "": 7, } def _replace_file_extension(path, suffix): return (path.parent / path.name.split(".")[0]).with_suffix(suffix) def _get_quant_extension(): return ".dac" if cfg.audio_backend == "dac" else ".enc" def _get_phone_extension(): return ".json" # if cfg.audio_backend == "dac" else ".phn.txt" def _get_quant_path(path): return _replace_file_extension(path, _get_quant_extension()) def _get_phone_path(path): return _replace_file_extension(path, _get_phone_extension()) _durations_map = {} # makeshift caching the above to disk @cfg.diskcache() def _get_duration_map( type="training" ): return _durations_map[type] if type in _durations_map else {} @cfg.diskcache() def _load_paths(dataset, type="training"): return { cfg.get_spkr( cfg.data_dir / data_dir / "dummy" ): _load_paths_from_metadata( data_dir, type=type, validate=cfg.dataset.validate and type == "training" ) for data_dir in tqdm(dataset, desc=f"Parsing dataset: {type}") } def _load_paths_from_metadata(group_name, type="training", validate=False): data_dir = group_name if cfg.dataset.use_hdf5 else cfg.data_dir / group_name _fn = _get_hdf5_paths if cfg.dataset.use_hdf5 else _get_paths_of_extensions def key( id, entry=None ): return f"/{type}/{_get_hdf5_path(data_dir)}/{id}" if cfg.dataset.use_hdf5 else data_dir / id metadata_path = cfg.metadata_dir / f'{group_name}.json' metadata = {} if cfg.dataset.use_metadata and metadata_path.exists(): metadata = json.loads(open( metadata_path, "r", encoding="utf-8" ).read()) if len(metadata) == 0: return _fn( data_dir, type if cfg.dataset.use_hdf5 else _get_quant_extension(), validate ) def _validate( id, entry ): phones = entry['phones'] if "phones" in entry else 0 duration = entry['duration'] if "duration" in entry else 0 # add to duration bucket k = key(id, entry) if type not in _durations_map: _durations_map[type] = {} _durations_map[type][k] = duration if not validate: return True return cfg.dataset.min_duration <= duration and duration <= cfg.dataset.max_duration return [ key(id, entry) for id, entry in metadata.items() if _validate(id, entry) ] def _get_hdf5_path(path): # to-do: better validation #print(path) return str(path) def _get_hdf5_paths( data_dir, type="training", validate=False ): data_dir = str(data_dir) key = f"/{type}/{_get_hdf5_path(data_dir)}" def _validate( id, entry ): phones = entry.attrs['phonemes'] duration = entry.attrs['duration'] if type not in _durations_map: _durations_map[type] = {} _durations_map[type][f"{key}/{id}"] = duration if not validate: return True return cfg.dataset.min_duration <= duration and duration <= cfg.dataset.max_duration return [ Path(f"{key}/{id}") for id, entry in cfg.hdf5[key].items() if _validate(id, entry) ] if key in cfg.hdf5 else [] def _get_paths_of_extensions( path, extensions=_get_quant_extension(), validate=False ): if isinstance(path, str): path = Path(path) def _validate(path): if "".join(path.suffixes) not in extensions: return False if not _get_phone_path(path).exists() or not _get_quant_path(path).exists(): return False if not validate: return True # to-do: find an easy way to determine size from pickled quants without loading # to-do: find a consistent way to derive phoneme count from filesize (probably can't due to utf-8) phones = len(_get_phones(_get_phone_path(path))) # _get_phone_path(path).stat().st_size // 2 + 1 return cfg.dataset.min_phones <= phones and phones <= cfg.dataset.max_phones return [ p for p in list(path.iterdir()) if _validate(p) ] if path.exists() and path.is_dir() else [] def _load_quants(path, return_metadata=False) -> Tensor: qnt = np.load(_get_quant_path(path), allow_pickle=True)[()] if return_metadata: return torch.from_numpy(qnt["codes"].astype(int))[0][:, :].t().to(torch.int16), qnt["metadata"] return torch.from_numpy(qnt["codes"].astype(int))[0][:, :].t().to(torch.int16) # prune consecutive spaces def _cleanup_phones( phones, targets=[" "]): return [ p for i, p in enumerate(phones) if p not in targets or ( p in targets and p != phones[i-1] ) ] @cache def _get_phones(path): phone_path = _get_phone_path(path) quant_path = _get_quant_path(path) if phone_path.exists(): metadata = json.loads(open(phone_path, "r", encoding="utf-8").read()) elif quant_path.exists(): _, metadata = _load_quants( path, return_metadata=True ) else: raise Exception(f"Could not load phonemes: {path}") content = metadata["phonemes"] return "".join(content) def _interleaved_reorder(l, fn): groups = defaultdict(list) for e in l: groups[fn(e)].append(e) groups = {k: groups[k] for k in sorted(groups)} for interleaved in zip_longest(*groups.values()): for value in interleaved: if value is not None: yield value class Dataset(_Dataset): def __init__( self, phone_symmap=None, training=False, extra_paths_by_spkr_name: dict[str, list] = {}, ): super().__init__() self._head = None self.shuffle = False self.sampler = None self.paths = [] self.training = training self.dataset_type = "training" if self.training else "validation" self.dataset = cfg.dataset.training if self.training else cfg.dataset.validation self.sampler_type = cfg.dataset.sample_type # if self.dataset_type == "training" else "group" self.sampler_order = cfg.dataset.sample_order # to-do: do not do validation if there's nothing in the validation # this just makes it be happy if len(self.dataset) == 0: self.dataset = cfg.dataset.training # dict of paths keyed by speaker names self.paths_by_spkr_name = _load_paths(self.dataset, self.dataset_type) # cull speakers if they do not have enough utterances if cfg.dataset.min_utterances > 0: keys = list(self.paths_by_spkr_name.keys()) for key in keys: if len(self.paths_by_spkr_name[key]) < cfg.dataset.min_utterances: del self.paths_by_spkr_name[key] # flatten paths self.paths = list(itertools.chain.from_iterable(self.paths_by_spkr_name.values())) # split dataset accordingly per GPU if cfg.distributed and self.training: batches = len(self.paths) // world_size() start = batches * global_rank() end = batches * (global_rank() + 1) self.paths = self.paths[start:end] # recreate paths_by_spkr_name self.paths_by_spkr_name = {} for path in self.paths: name = cfg.get_spkr( Path(path) ) if name not in self.paths_by_spkr_name: self.paths_by_spkr_name[name] = [] self.paths_by_spkr_name[name].append( path ) # do it here due to the above self.duration = 0 self.duration_map = _get_duration_map( self.dataset_type ) self.duration_buckets = {} # store in corresponding bucket for path in self.paths: duration = self.duration_map[path] self.duration += duration # only calc duration if we're tot going to order by duration if self.sampler_order != "duration": continue bucket = str(int(round(duration))) if bucket not in self.duration_buckets: self.duration_buckets[bucket] = [] self.duration_buckets[bucket].append( ( Path(path), duration ) ) # sort by duration if self.sampler_order == "duration": # sort and interleave for bucket in self.duration_buckets: # sort by duration self.duration_buckets[bucket].sort( key=lambda x: x[1] ) # replace with path self.duration_buckets[bucket] = [ x[0] for x in self.duration_buckets[bucket] ] # flatten by paths self.duration_buckets[bucket] = [*_interleaved_reorder(self.duration_buckets[bucket], self.get_speaker)] # flatten paths self.paths = list(itertools.chain.from_iterable(self.duration_buckets.values())) elif self.sampler_order == "shuffle": # just interleave self.paths = [*_interleaved_reorder(self.paths, self.get_speaker)] # dict of speakers keyed by speaker group self.spkrs_by_spkr_group = {} for data_dir in self.dataset: spkr = cfg.get_spkr( data_dir / "dummy" ) spkr_group = cfg.get_spkr_group( data_dir / "dummy" ) if spkr not in self.paths_by_spkr_name or len(self.paths_by_spkr_name[spkr]) < cfg.dataset.min_utterances: continue if spkr_group not in self.spkrs_by_spkr_group: self.spkrs_by_spkr_group[spkr_group] = [] self.spkrs_by_spkr_group[spkr_group].append( spkr ) self.spkr_groups = list(self.spkrs_by_spkr_group.keys()) self.noise_paths = _load_paths(cfg.dataset.noise, "noise") self.noise_paths = list(itertools.chain.from_iterable(self.noise_paths.values())) self.phone_symmap = phone_symmap or self._get_phone_symmap() self.spkr_symmap = self._get_spkr_symmap() self.spkr_group_symmap = self._get_spkr_group_symmap() self.lang_symmap = self._get_lang_symmap() self.tone_symmap = self._get_tone_symmap() self.task_symmap = self._get_task_symmap() # assert len(self.phone_symmap) < 256, "Unique token count should be [0,255] to fit within uint8" self.text_dtype = torch.uint8 if len(self.phone_symmap) < 256 else torch.int16 if len(self.paths) == 0: raise ValueError(f"No valid path is found for {self.dataset_type}") sampler_path = cfg.rel_path / f"sampler.{self.sampler_type}.rank{global_rank()}.pt" if self.sampler_type == "path": self.sampler = OrderedSampler( len(self) ) self.samplers = {} self.spkr_samplers = {} else: self.sampler = RandomSampler( len(self) ) self.samplers = { name: PoolSampler( paths, keep_all=True ) for name, paths in self.paths_by_spkr_name.items() } self.spkr_samplers = { name: PoolSampler( [*set(speakers)], keep_all=True ) for name, speakers in self.spkrs_by_spkr_group.items() } self.load_state_dict() def get_speaker(self, path): if isinstance(path, str): path = Path(path) res = cfg.get_spkr(path) return res def get_speaker_group(self, path): if isinstance(path, str): path = Path(path) res = cfg.get_spkr_group(path) return res def get_language(self, speaker_group): lang = "en" for k, v in cfg.dataset.speaker_languages.items(): if speaker_group in v: lang = k break return lang @cached_property def spkrs(self): return sorted({self.get_speaker(path) for path in self.paths}) @cached_property def tasks(self): return cfg.dataset.tasks_list # ["tts", "tts", "ns", "sr", "tse", "tts", "tts"] # , "cse", "nse" def save_state_dict(self, path = None): if path is None: path = cfg.rel_path / f"sampler.{self.sampler_type}.rank{global_rank()}.pt" if self.sampler_type == "path": state_dict = self.sampler.get_state() else: state_dict = { "samplers": { name: sampler.get_state() for name, sampler in self.samplers.items() }, "spkr_samplers": { name: sampler.get_state() for name, sampler in self.spkr_samplers.items() }, } torch.save(state_dict, path) def load_state_dict(self, path = None): if path is None: path = cfg.rel_path / f"sampler.{self.sampler_type}.rank{global_rank()}.pt" if not path.exists(): return state_dict = torch.load(path) if self.sampler_type == "path": state_dict = self.sampler.set_state(state_dict) else: for name, sampler in state_dict["samplers"].items(): if name not in self.samplers: continue self.samplers[name].set_state( sampler ) for name, sampler in state_dict["spkr_samplers"].items(): if name not in self.spkr_samplers: continue self.spkr_samplers[name].set_state( sampler ) def _get_phone_symmap(self): return get_phone_symmap() def _get_spkr_symmap(self): return {s: i for i, s in enumerate(self.spkrs)} def _get_spkr_group_symmap(self): return {s: i for i, s in enumerate(self.spkr_groups)} def _get_lang_symmap(self): return get_lang_symmap() def _get_tone_symmap(self): return get_tone_symmap() def _get_task_symmap(self): return get_task_symmap() """ def get_task_token( self, token, levels=cfg.model.max_levels ): if not hasattr(self, "task_symmap"): self.task_symmap = self._get_task_symmap() return torch.Tensor([[ self.task_symmap[f'<{token}>'] for _ in range(levels) ]]).to(dtype=torch.int16) """ def sample_noise(self): path = random.choice(self.noise_paths) if cfg.dataset.use_hdf5: key = _get_hdf5_path(path) qnt = torch.from_numpy(cfg.hdf5[key]["audio"][:, :]).to(torch.int16) else: qnt = _load_quants(path, return_metadata=False) return qnt def sample_speakers(self, ignore=[]): choices = set(self.spkrs) - set(ignore) return random.choice([*choices]) def sample_prompts(self, spkr_name, ignore): prom_list = [] choices = set(self.paths_by_spkr_name[spkr_name]) - {ignore} choices = [*choices] # no other utterances, it'd make more sense to prune speakers with only one utterance in the validation step if len(choices) == 0: choices = [*set(self.paths_by_spkr_name[spkr_name])] """ raise ValueError( f"Failed to find another different utterance for {spkr_name}." ) """ prom_length = 0 trim_length = int(random.uniform(cfg.dataset.prompt_duration_range[0], cfg.dataset.prompt_duration_range[1]) * cfg.dataset.frames_per_second) for _ in range(cfg.dataset.max_prompts): path = random.choice(choices) if cfg.dataset.use_hdf5: key = _get_hdf5_path(path) if "audio" not in cfg.hdf5[key]: _logger.warning(f'MISSING AUDIO: {key}') continue qnt = torch.from_numpy(cfg.hdf5[key]["audio"][:, :]).to(torch.int16) else: qnt = _load_quants(path, return_metadata=False) if 0 < trim_length and trim_length < qnt.shape[0]: qnt = trim( qnt, trim_length ) prom_list.append(qnt) prom_length += qnt.shape[0] if prom_length >= trim_length or random.random() > cfg.dataset.random_utterance: break # might be better to decode => concat waveforms with silence in between => reencode # as you technically can't just append encodec sequences together like this without issues prom = torch.cat(prom_list) if 0 < trim_length and trim_length < prom.shape[0]: prom = trim( prom, trim_length ) return prom def __getitem__(self, index): if self.sampler_type == "group": spkr_group = self.spkr_groups[index] #spkr_group_id = self.spkr_group_symmap[spkr_group] spkr_name = self.spkr_samplers[spkr_group].sample() spkr_id = self.spkr_symmap[spkr_name] path = self.samplers[spkr_name].sample() elif self.sampler_type == "speaker": spkr_name = self.spkrs[index] spkr_id = self.spkr_symmap[spkr_name] path = self.samplers[spkr_name].sample() spkr_group = self.get_speaker_group(path) #spkr_group_id = self.spkr_group_symmap[spkr_group] else: path = self.paths[index] spkr_name = self.get_speaker(path) spkr_id = self.spkr_symmap[spkr_name] spkr_group = self.get_speaker_group(path) #spkr_group_id = self.spkr_group_symmap[spkr_group] if cfg.dataset.use_hdf5: key = _get_hdf5_path(path) if key not in cfg.hdf5: raise RuntimeError(f'Key of Path ({path}) not in HDF5: {key}') text = cfg.hdf5[key]["text"][:] resps = cfg.hdf5[key]["audio"][:, :] text = torch.from_numpy(text).to(self.text_dtype) resps = torch.from_numpy(resps).to(torch.int16) else: resps, metadata = _load_quants(path, return_metadata=True) text = torch.tensor(tokenize( metadata["phonemes"] )).to(self.text_dtype) #text = torch.tensor(tokenize( _get_phones( path ) )).to(self.text_dtype) lang = torch.tensor([ self.lang_symmap[ self.get_language(spkr_group) ]]).to(torch.uint8) # append additional prompts in an attempt to artifically increase lengths / offer new data if cfg.experimental and cfg.dataset.max_resps > 1 and random.random() < cfg.dataset.p_resp_append: choices = [*(set(self.paths_by_spkr_name[spkr_name]) - {path})] if len(choices) > 0: for _ in range( cfg.dataset.max_resps - 1 ): sampled_path = random.choice(choices) choices = [*(set(choices) - {sampled_path})] if cfg.dataset.use_hdf5: key = _get_hdf5_path(sampled_path) txt = cfg.hdf5[key]["text"][:] qnt = cfg.hdf5[key]["audio"][:, :] txt = np.array( txt ) txt = torch.from_numpy(txt).to(self.text_dtype) qnt = torch.from_numpy(qnt).to(torch.int16) else: #txt = torch.tensor([*map(self.phone_symmap.get, _get_phones(sampled_path))]).to(self.text_dtype) #txt = torch.tensor(tokenize(_get_phones(sampled_path))).to(self.text_dtype) qnt, metadata = _load_quants(sampled_path, return_metadata=True) txt = torch.tensor(tokenize( metadata["phonemes"] )).to(self.text_dtype) # [original text] [new text] # removes the original text's , includes a space, and remove the new text's text = torch.concat([ text[:-1], torch.tensor([self.phone_symmap[" "]]).to(torch.int16), txt[1:] ]) # might be better to decode => concat waveforms with silence in between => reencode # as you technically can't just append encodec sequences together like this without issues resps = torch.concat([ resps, qnt ]) task = "tts" trim_length = int(random.uniform(cfg.dataset.prompt_duration_range[0], cfg.dataset.prompt_duration_range[1]) * cfg.dataset.frames_per_second) proms = self.sample_prompts(spkr_name, ignore=path) if random.random() < cfg.dataset.random_utterance else resps # Disabled until I swap over to a better method """ task = random.choice(self.tasks) # ensure a speaker has at least four utterances # default to tts if not if len(set(self.paths_by_spkr_name[spkr_name]) - {path}) < 4: task = "tts" noise_scale = 0.25 if task == "tts" or task == "tts-c": trim_length = int(cfg.dataset.prompt_duration * cfg.dataset.frames_per_second) # demote if the target is too short if task == "tts-c" and trim_length * 2 >= resps.shape[0]: task = "tts" # VALL-E continuous # ignore if target utterance is shorter than prompt duration # to-do: actually do this for the AR only as I don't think the paper trained the NAR for this if task == "tts-c": proms = resps[:trim_length, :] resps = resps[trim_length:, :] proms = torch.cat( [self.get_task_token(task), proms] ) else: proms = self.sample_prompts(spkr_name, ignore=path) if random.random() < cfg.dataset.random_utterance else resps # noise suppression || speech removal elif task == "ns" or task == "sr": # sample random noise noise = self.sample_noise() # extend the noise to fill the target audio noise = repeat_extend_audio(noise, resps.shape[0]) # create the input prompt by merging the target audio with the noise proms = merge_audio( resps, noise, scale=[1, noise_scale], device="cpu" ) # set the target to just be the noise if if task == "sr": resps = noise # prepend the task token proms = torch.cat( [self.get_task_token(task), proms] ) # set the text prompt to empty to train without a guided text prompt if random.random() < 0.5: text = torch.tensor([1, 2]).to(self.text_dtype) # target speech extraction elif task == "tse": # sample a random, clean, utterance for the target speaker clean_proms = self.sample_prompts(spkr_name, ignore=path) # sample a random, clean utterance from a different speaker other_proms = self.sample_prompts(self.sample_speakers(ignore=[spkr_name]), ignore="") # overlay the random speaker over the target audio smallest_size = min(resps.shape[0], other_proms.shape[0]) if other_proms.shape[0] == smallest_size: noisy_proms = merge_audio( resps[:smallest_size, :], other_proms, scale=[1, random.uniform(0.5, 0.75)], device="cpu" ) noisy_proms = torch.cat( [ noisy_proms, resps[smallest_size:, :] ] ) else: noisy_proms = merge_audio( resps, other_proms[:smallest_size, :], scale=[1, random.uniform(0.5, 0.75)], device="cpu" ) noisy_proms = torch.cat( [ noisy_proms, other_proms[smallest_size:, :] ] ) # stitch together the promps proms = torch.cat( [clean_proms, self.get_task_token(task), noisy_proms] ) # set the text prompt to empty to train without a guided text prompt if random.random() < 0.5: text = torch.tensor([1, 2]).to(self.text_dtype) # # speech editing would require higher quality transcription data (phoneme level/word level) unfortunately # as I need to get a good clean point to trim into # clean speech editing elif task == "cse" or task == "nse": choices = set(self.paths_by_spkr_name[spkr_name]) - {path} sampled = random.sample([*choices], 4) if cfg.dataset.use_hdf5: texts = [ torch.from_numpy(cfg.hdf5[_get_hdf5_path(path)]["text"][:]).to(self.text_dtype) for path in sampled ] qnts = [ torch.from_numpy(cfg.hdf5[_get_hdf5_path(path)]["audio"][:, :]).to(torch.int16) for path in sampled ] else: texts = [ torch.tensor([*map(self.phone_symmap.get, _get_phones(path))]).to(self.text_dtype) for path in sampled ] qnts = [ _load_quants(path) for path in sampled ] # remove for i in range(len(texts)): texts[i] = texts[i][1:-1] pre_text, mid_text, post_text, edit_text = texts pre_prom, mid_prom, post_prom, edit_prom = qnts # randomly drop out pre if random.random() < 0.125: pre_text = None pre_prom = None # randomly drop out post if random.random() < 0.125: post_text = None post_prom = None # create new text text = torch.cat( [ torch.Tensor( [ 1 ] ).to(dtype=self.text_dtype) ] + # ([ pre_text, torch.Tensor( [ 3 ] ).to(dtype=self.text_dtype) ] if pre_text is not None else []) + # pre_text + space' [ edit_text ] + # 'edit text' ([ torch.Tensor( [ 3 ] ).to(dtype=self.text_dtype), post_text ] if post_text is not None else []) + # 'space' + edit_text [ torch.Tensor( [ 2 ] ).to(dtype=self.text_dtype) ] # ) if task == "nse": # sample random noise noise = self.sample_noise() # it might be better to extend the noise to the sum of the pre+mid+post or pre+edit+post to keep the noise truly coherent # but it's noise, it's supposed to be random def noise_proms( p ): # ignore if we turned it off if p is None: return None # extend the noise to fill the target audio n = repeat_extend_audio(noise, p.shape[0]) # merge the noise over the utterance return merge_audio(p, n, scale=[1, noise_scale], device="cpu") # apply noise to all pieces pre_prom = noise_proms( pre_prom ) mid_prom = noise_proms( mid_prom ) post_prom = noise_proms( post_prom ) edit_prom = noise_proms( edit_prom ) else: mid_prom = self.get_task_token("mask") # create new proms proms = torch.cat( ([ pre_prom ] if pre_prom is not None else []) + [self.get_task_token("soe")] + [ mid_prom ] + # is if task is CSE [self.get_task_token("eoe")] + ([ post_prom ] if post_prom is not None else []) ) # create new resp resps = torch.cat( ([ pre_prom ] if pre_prom is not None else []) + [ edit_prom ] + ([ post_prom ] if post_prom is not None else []) ) else: raise Exception(f'Undefined task: {task}') """ """ # emulate SVC # takes in an utterance of the target speaker, a target utterenace as a reference clip as the input prompt # targets an utterance of the target speaker with the same tempo + pitch + etc as the reference clip # NOTE: I do not have a clue how to go about this. I *could* dynamically generate clips through RVC here, but I imagine the penalty would be astronomical # ahead-of-time dataset preparation of a shit ton of RVC clips might be the key. # aside from that, I have no clue how to go about training this, as this is entirely a proof of concept task. elif task == "svc": # sample a random, clean utterance for the target speaker proms = self.sample_prompts(spkr_name, ignore=path) if random.random() < cfg.dataset.random_utterance else resps # sample a reference clip from a different speaker ref_proms = self.sample_rvc(self.sample_speakers(ignore=[spkr_name])) # resps = # stitch together the promps proms = torch.cat( [proms, self.get_task_token(task), ref_proms] ) # set the text prompt to empty to train without a guided text prompt if random.random() < 0.5: text = torch.tensor([1, 2]).to(self.text_dtype) """ # trim to fit to requested prom/resps levels proms = proms[:, :cfg.model.prom_levels] resps = resps[:, :cfg.model.prom_levels] return dict( index=index, path=Path(path), spkr_name=spkr_name, spkr_id=spkr_id, task=task, lang=lang, text=text, proms=proms, resps=resps, ) def head_(self, n): self._head = n def training_(self, value): self.training = value def __len__(self): if self.sampler_type == "group": return min(len(self.spkr_groups), self._head or len(self.spkr_groups)) if self.sampler_type == "speaker": return min(len(self.spkrs), self._head or len(self.spkrs)) return min(len(self.paths), self._head or len(self.paths)) def pin_memory(self): self.text = self.text.pin_memory() self.proms = self.proms.pin_memory() self.resps = self.resps.pin_memory() self.resp = self.resp.pin_memory() return self def collate_fn(samples: list[dict]): batch: dict[str, Any] = {k: [s[k] for s in samples] for k in samples[0]} return batch def _seed_worker(worker_id): worker_seed = torch.initial_seed() % 2**32 np.random.seed(worker_seed) random.seed(worker_seed) def _create_dataloader(dataset, training): """ if cfg.distributed and training: sampler = DistributedSampler(dataset) shuffle = False """ return DataLoader( dataset=dataset, batch_size=cfg.hyperparameters.batch_size if training else cfg.evaluation.batch_size, shuffle=dataset.shuffle, drop_last=training, num_workers=cfg.dataset.workers, collate_fn=collate_fn, persistent_workers=cfg.dataset.workers > 1, pin_memory=False, # True, worker_init_fn=_seed_worker, sampler=dataset.sampler, ) def create_datasets(): train_dataset = Dataset( training=True ) val_dataset = Dataset( phone_symmap=train_dataset.phone_symmap, training=False ) return train_dataset, val_dataset def create_train_val_dataloader(): train_dataset, val_dataset = create_datasets() # it'll cry about trying to pickle a torch._C_generator or something try: subtrain_dataset = copy.deepcopy(train_dataset) except Exception as e: subtrain_dataset = Dataset( training=True ) if subtrain_dataset.sampler_type == "path": subtrain_dataset.head_(cfg.evaluation.size) train_dl = _create_dataloader(train_dataset, training=True) val_dl = _create_dataloader(val_dataset, training=False) subtrain_dl = _create_dataloader(subtrain_dataset, training=False) _logger.info(str(train_dataset.phone_symmap)) _logger.info(str(train_dataset.spkr_symmap)) _logger.info(str(train_dataset.spkr_group_symmap)) _logger.info(f"#samples (train): {len(train_dataset)}.") _logger.info(f"#samples (val): {len(val_dataset)}.") _logger.info(f"#samples (subtrain): {len(subtrain_dataset)}.") _logger.info(f"#duration (train): {str(train_dataset.duration)}.") _logger.info(f"#duration (val): {str(val_dataset.duration)}.") _logger.info(f"#duration (subtrain): {str(subtrain_dataset.duration)}.") assert isinstance(subtrain_dl.dataset, Dataset) return train_dl, subtrain_dl, val_dl # parse dataset into better to sample metadata def create_dataset_metadata( skip_existing=True ): symmap = get_phone_symmap() root = str(cfg.data_dir) metadata_root = str(cfg.metadata_dir) cfg.metadata_dir.mkdir(parents=True, exist_ok=True) def add( dir, type="training", audios=True, texts=True ): name = str(dir) name = name.replace(root, "") speaker_name = name metadata_path = Path(f"{metadata_root}/{speaker_name}.json") metadata_path.parents[0].mkdir(parents=True, exist_ok=True) try: metadata = {} if not metadata_path.exists() else json.loads(open(str(metadata_path), "r", encoding="utf-8").read()) except Exception as e: metadata = {} if not os.path.isdir(f'{root}/{name}/'): return # tqdm.write(f'{root}/{name}') files = os.listdir(f'{root}/{name}/') # grab IDs for every file ids = { file.replace(_get_quant_extension(), "").replace(_get_phone_extension(), "") for file in files } for id in tqdm(ids, desc=f"Processing {name}"): try: quant_exists = os.path.exists(f'{root}/{name}/{id}{_get_quant_extension()}') if audios else True text_exists = os.path.exists(f'{root}/{name}/{id}{_get_phone_extension()}') if texts else True if not quant_exists: continue key = f'{type}/{speaker_name}/{id}' if skip_existing and id in metadata: continue if id not in metadata: metadata[id] = {} utterance_metadata = {} if audios: # ideally we'll encode Encodec-based audio in a similar manner because np has smaller files than pt dac = np.load(f'{root}/{name}/{id}{_get_quant_extension()}', allow_pickle=True)[()] qnt = torch.from_numpy(dac["codes"].astype(int))[0].t().to(dtype=torch.int16) if "text" in dac["metadata"]: utterance_metadata["text"] = dac["metadata"]["text"] if "phonemes" in dac["metadata"]: utterance_metadata["phonemes"] = dac["metadata"]["phonemes"] if "language" in dac["metadata"]: utterance_metadata["language"] = dac["metadata"]["language"] if "original_length" in dac["metadata"] and "sample_rate" in dac["metadata"]: utterance_metadata["duration"] = dac["metadata"]["original_length"] / dac["metadata"]["sample_rate"] # text if texts and text_exists and not utterance_metadata: utterance_metadata = json.loads(open(f'{root}/{name}/{id}{_get_phone_extension()}', "r", encoding="utf-8").read()) for k, v in utterance_metadata.items(): metadata[id][k] = v except Exception as e: tqdm.write(f'Error while processing {id}: {e}') with open(str(metadata_path), "w", encoding="utf-8") as f: f.write( json.dumps( metadata ) ) # training for data_dir in tqdm(sorted(cfg.dataset.training), desc="Processing Training"): add( data_dir, type="training" ) # validation for data_dir in tqdm(sorted(cfg.dataset.validation), desc='Processing Validation'): add( data_dir, type="validation" ) # noise for data_dir in tqdm(sorted(cfg.dataset.noise), desc='Processing Noise'): add( data_dir, type="noise", texts=False ) # parse yaml to create an hdf5 file def create_dataset_hdf5( skip_existing=True ): cfg.dataset.use_hdf5 = True cfg.load_hdf5(write=True) hf = cfg.hdf5 symmap = get_phone_symmap() root = str(cfg.data_dir) metadata_root = str(cfg.metadata_dir) def add( dir, type="training", audios=True, texts=True ): name = str(dir) name = name.replace(root, "") # yucky speaker_name = name if "LibriTTS-R" in speaker_name: speaker_name = speaker_name.replace("LibriTTS-R", "LibriVox") metadata_path = Path(f"{metadata_root}/{speaker_name}.json") metadata_path.parents[0].mkdir(parents=True, exist_ok=True) metadata = {} if not metadata_path.exists() else json.loads(open(str(metadata_path), "r", encoding="utf-8").read()) if not os.path.isdir(f'{root}/{name}/'): return files = os.listdir(f'{root}/{name}/') # grab IDs for every file ids = { file.replace(_get_quant_extension(), "").replace(_get_phone_extension(), "") for file in files } """ # rephonemizes if you fuck up and use and old tokenizer... for id, entry in tqdm(metadata.items(), desc=f"Processing {name}"): key = f'{type}/{speaker_name}/{id}' if key not in hf: continue group = hf[key] if "phonemes" not in entry: continue if "text" not in group: continue txt = entry["phonemes"] phn = "".join(txt) phn = cfg.tokenizer.encode(phn) phn = np.array(phn).astype(np.uint8) del group["text"] group.create_dataset('text', data=phn, compression='lzf') """ for id in tqdm(ids, desc=f"Processing {name}"): try: quant_exists = os.path.exists(f'{root}/{name}/{id}{_get_quant_extension()}') if audios else True text_exists = os.path.exists(f'{root}/{name}/{id}{_get_phone_extension()}') if texts else True if not quant_exists: continue key = f'{type}/{speaker_name}/{id}' if skip_existing and key in hf: continue group = hf.create_group(key) if key not in hf else hf[key] if id not in metadata: metadata[id] = {} utterance_metadata = {} # audio if audios: dac = np.load(f'{root}/{name}/{id}{_get_quant_extension()}', allow_pickle=True)[()] qnt = torch.from_numpy(dac["codes"].astype(int))[0].t().to(dtype=torch.int16) if "text" in dac["metadata"]: utterance_metadata["text"] = dac["metadata"]["text"] if "phonemes" in dac["metadata"]: utterance_metadata["phonemes"] = dac["metadata"]["phonemes"] if "language" in dac["metadata"]: utterance_metadata["language"] = dac["metadata"]["language"] if "original_length" in dac["metadata"] and "sample_rate" in dac["metadata"]: utterance_metadata["duration"] = dac["metadata"]["original_length"] / dac["metadata"]["sample_rate"] if "audio" not in group: group.create_dataset('audio', data=qnt.numpy().astype(np.int16), compression='lzf') # text if texts: if not utterance_metadata and text_exists: utterance_metadata = json.loads(open(f'{root}/{name}/{id}{_get_phone_extension()}', "r", encoding="utf-8").read()) phn = "".join(utterance_metadata["phonemes"]) phn = cfg.tokenizer.encode(phn) phn = np.array(phn).astype(np.uint8) if "text" not in group: group.create_dataset('text', data=phn, compression='lzf') for k, v in utterance_metadata.items(): group.attrs[k] = v metadata[id][k] = v except Exception as e: tqdm.write(f'Error while processing {id}: {e}') """ with open(str(metadata_path), "w", encoding="utf-8") as f: f.write( json.dumps( metadata ) ) """ # training for data_dir in tqdm(cfg.dataset.training, desc="Processing Training"): add( data_dir, type="training" ) # validation for data_dir in tqdm(cfg.dataset.validation, desc='Processing Validation'): add( data_dir, type="validation" ) # noise for data_dir in tqdm(cfg.dataset.noise, desc='Processing Noise'): add( data_dir, type="noise", texts=False ) # write symmap if "symmap" in hf: del hf['symmap'] hf.create_dataset('symmap', data=json.dumps(symmap)) hf.close() if __name__ == "__main__": import argparse parser = argparse.ArgumentParser("Save trained model to path.") parser.add_argument("--action", type=str) parser.add_argument("--tasks", type=str) args, unknown = parser.parse_known_args() task = args.action cfg.dataset.workers = 1 class LoggerOveride: def info(self, *args): print(*args) _logger = LoggerOveride() if args.action == "hdf5": create_dataset_hdf5() elif args.action == "list-dataset": dataset = [] for group in os.listdir(cfg.data_dir): for name in os.listdir(cfg.data_dir / group): if len(os.listdir(cfg.data_dir / group / name)) == 0: continue dataset.append(f'{group}/{name}') print(json.dumps(dataset)) elif args.action == "metadata": create_dataset_metadata() elif args.action == "sample": train_dl, subtrain_dl, val_dl = create_train_val_dataloader() samples = { "training": [ next(iter(train_dl)), next(iter(train_dl)) ], "evaluation": [ next(iter(subtrain_dl)), next(iter(subtrain_dl)) ], "validation": [ next(iter(val_dl)), next(iter(val_dl)) ], } Path("./data/sample-test/").mkdir(parents=True, exist_ok=True) for k, v in samples.items(): for i in range(len(v)): for j in tqdm(range(len(v[i]['proms'])), desc="Decoding..."): """ try: decode_to_file( v[i]['proms'][j], f"./data/sample-test/{k}.{i}.{j}.proms.wav", device="cpu" ) except Exception as e: print(f"Error while decoding prom {k}.{i}.{j}.wav:", str(e)) try: decode_to_file( v[i]['resps'][j], f"./data/sample-test/{k}.{i}.{j}.resps.wav", device="cpu" ) except Exception as e: print(f"Error while decoding resp {k}.{i}.{j}.wav:", str(e)) """ v[i]['proms'][j] = v[i]['proms'][j].shape v[i]['resps'][j] = v[i]['resps'][j].shape for k, v in samples.items(): for i in range(len(v)): print(f'{k}[{i}]:', v[i]) elif args.action == "tasks": index = 0 cfg.dataset.tasks_list = args.tasks.split(",") train_dl, subtrain_dl, val_dl = create_train_val_dataloader() batch = next(iter(train_dl)) for text, resps, proms, task in zip(batch["text"], batch["resps"], batch["proms"], batch["task"]): if task not in cfg.dataset.tasks_list: continue print(text, task, cfg.model.prom_levels) print( proms.shape, resps.shape ) tokens = 0 tokens += sum([ text.shape[0] for text in batch["text"] ]) tokens += sum([ resps.shape[0] for resps in batch["resps"] ]) print( tokens ) decode_to_file( proms, f"./data/{task}.proms.wav", device="cpu" ) decode_to_file( resps, f"./data/{task}.resps.wav", device="cpu" ) break