from torch import Tensor from typing import Any, Protocol Stats = dict[str, float] class TrainFeeder(Protocol): def __call__( self, *, engine: "Engine", batch: Any ) -> None | tuple[Tensor, Stats]: ... def default_feeder(engine, batch): if isinstance(batch, list): engine( *batch ) elif isinstance(batch, dict): engine( **batch ) else: engine( batch ) losses = engine.gather_attribute("loss") loss = torch.stack([*losses.values()]).sum() stats = {} stats |= {k: v.item() for k, v in losses.items()} return loss, stats from ..config import cfg from ..utils import dispatch_attribute, flatten_dict, gather_attribute, do_gc, to_device from ..utils.distributed import init_distributed, distributed_initialized, is_global_leader, world_size, cleanup_distributed from ..utils.io import torch_save, torch_load from ..models.lora import freeze_non_lora_weights, lora_get_state_dict, lora_load_state_dict import logging import time import torch import torch.distributed import os from torch import Tensor from torch.distributed import all_reduce from typing import Any, Protocol from functools import cached_property from .base import TrainFeeder from ..utils import wrapper as ml _logger = logging.getLogger(__name__) if not distributed_initialized() and cfg.trainer.backend == "local": # and world_size() > 1: init_distributed(torch.distributed.init_process_group) # A very naive engine implementation using barebones PyTorch class Engine(): def __init__(self, *args, **kwargs): if 'hyper_config' in kwargs: self.hyper_config = kwargs['hyper_config'] kwargs.pop("hyper_config") self.module = kwargs['model'].to(cfg.device).to(torch.float32 if cfg.trainer.amp else cfg.trainer.dtype) self.optimizer = kwargs['optimizer'] if 'optimizer' in kwargs else None self.lr_scheduler = kwargs['lr_scheduler'] if 'lr_scheduler' in kwargs else None self.global_steps = kwargs.pop("global_steps", 0) self.micro_steps = kwargs.pop("micro_steps", 0) self.global_samples = kwargs.pop("global_samples", 0) self.tokens_processed = kwargs.pop("tokens_processed", 0) self._frozen_params = set() self.max_nan_losses = 8 self.loss_scaler = torch.cuda.amp.GradScaler() if cfg.trainer.scale_loss else None self.current_batch_size = 0 self._global_grad_norm = None def freeze(self, freeze_all=True): # set to freeze if self.hyper_config is None or not hasattr(self.hyper_config, "frozen_params"): raise Exception("freeze_all=False yet self.hyper_config.frozen_params is None") # freeze non-LoRA params if requested if not self.hyper_config.frozen_params and not freeze_all and cfg.lora is not None: return freeze_non_lora_weights( self.module, embeddings=cfg.lora.embeddings ) for name, param in self.module.named_parameters(): if (freeze_all and param.requires_grad) or (not freeze_all and name in self.hyper_config.frozen_params): param.requires_grad_(False) self._frozen_params.add(param) def unfreeze(self): for p in self._frozen_params: p.requires_grad_(True) self._frozen_params.clear() @property def _training(self): if not hasattr(self, "hyper_config"): return True return self.hyper_config.training @property def global_step(self): return self.global_steps @property def micro_step(self): return self.micro_steps @property def batch_size(self): return self.current_batch_size if self.current_batch_size > 0 else cfg.hyperparameters.batch_size @property def gradient_accumulation_steps(self): return cfg.hyperparameters.gradient_accumulation_steps @property def gradient_clipping(self): return cfg.hyperparameters.gradient_clipping def gather_attribute(self, *args, **kwargs): return gather_attribute(self.module, *args, **kwargs) def dispatch_attribute(self, *args, **kwargs): return dispatch_attribute(self.module, *args, **kwargs) def save_checkpoint(self, save_dir, tag ): if is_global_leader(): module = self.module.state_dict() # if training lora # this is a separate path to override saving the weights lora = None if cfg.lora is not None: lora, module = lora_get_state_dict( module, split = True ) save_dir = cfg.ckpt_dir / cfg.lora.full_name save_path = save_dir / tag / f"state.{cfg.weights_format}" save_path.parent.mkdir(parents=True, exist_ok=True) torch_save({ "module": module, "lora": lora, "optimizer": self.optimizer.state_dict() if self.optimizer is not None else None, "lr_scheduler": self.lr_scheduler.state_dict() if self.lr_scheduler is not None else None, "stats": { "global_step": self.global_step, "micro_step": self.micro_step, "global_samples": self.global_samples, "tokens_processed": self.tokens_processed, } }, save_path) open(save_dir / "latest", 'w').write( tag ) torch.distributed.barrier() def load_checkpoint(self, load_dir, tag=None, load_module_strict=True, load_optimizer_states=True, load_lr_scheduler_states=True, load_module_only=False): # override to load the lora instead if cfg.lora is not None: load_dir = cfg.ckpt_dir / cfg.lora.full_name if tag is None: tag_path = load_dir / "latest" if not tag_path.exists(): return tag = open(tag_path).read() load_path = load_dir / tag / f"state.{cfg.weights_format}" if not load_path.exists(): return state = torch_load(load_path, device=cfg.device) self.global_steps = state['stats']['global_step'] if 'stats' in state else state['global_step'] self.micro_steps = state['stats']['micro_step'] if 'stats' in state else state['micro_step'] self.global_samples = state['stats']['global_samples'] if 'stats' in state else state['global_samples'] self.tokens_processed = state['stats']['tokens_processed'] if 'stats' in state else state['tokens_processed'] self.module.load_state_dict(state['module'], strict=cfg.trainer.strict_loading) load_optimizer_states = load_optimizer_states and self.optimizer is not None and 'optimizer' in state load_lr_scheduler_states = load_lr_scheduler_states and self.lr_scheduler is not None and 'lr_scheduler' in state if load_optimizer_states: self.optimizer.load_state_dict(state['optimizer']) #, device=cfg.device) if load_lr_scheduler_states: self.lr_scheduler.load_state_dict(state['lr_scheduler']) #, device=cfg.device) if 'lora' in state: lora_load_state_dict( self.module, state['lora'] ) def eval(self): return self.module.eval() def train(self): return self.module.train() def to(self, *args, **kwargs): self.module = self.module.to(*args, **kwargs) if self.optimizer: self.optimizer = self.optimizer.to(*args, **kwargs) return self def __call__(self, *args, **kwargs): return self.forward(*args, **kwargs) @cached_property def device(self): return next(self.module.parameters()).device def forward(self, *args, **kwargs): return self.module.forward(*args, **kwargs) def backward(self, loss): if self.loss_scaler is not None: return self.loss_scaler.scale(loss / self.gradient_accumulation_steps).backward() return (loss / self.gradient_accumulation_steps).backward() def step(self): with torch.set_grad_enabled(self.gradient_accumulation_steps > 1): self.micro_steps += 1 self.global_samples += self.batch_size if (self.micro_steps + 1) % max(1, self.gradient_accumulation_steps) == 0: torch.nn.utils.clip_grad_norm_(self.module.parameters(), self.gradient_clipping) self.global_steps += 1 if self.loss_scaler is not None: self.loss_scaler.step(self.optimizer) self.loss_scaler.update() else: self.optimizer.step() self.optimizer.zero_grad() self._get_grad_norm() def _get_grad_norm(self): t = [ param.grad.detach().flatten() for param in self.module.parameters() if param.grad is not None ] self._global_grad_norm = torch.cat(t).norm().item() if len(t) else None def get_lr(self): lrs = [] for param_group in self.optimizer.param_groups: if 'd_coeff' in param_group: lrs.append(param_group['d_coeff']) elif 'lr' in param_group: lrs.append(param_group['lr']) return lrs def set_lr(self, lr): for param_group in self.optimizer.param_groups: if 'd_coeff' in param_group: param_group['d_coeff'] = lr elif 'lr' in param_group: param_group['lr'] = lr def get_global_grad_norm(self): return self._global_grad_norm def traverse(self, *args, **kwargs): with ml.autocast(): self.forward(*args, **kwargs) losses = self.gather_attribute("loss") loss = torch.stack([*losses.values()]).sum() if torch.isnan(loss).any(): self.max_nan_losses = self.max_nan_losses - 1 if self.max_nan_losses < 0: raise RuntimeError("Too many NaN losses detected.") stats = {} stats |= {k: v.item() for k, v in losses.items()} stats |= self.gather_attribute("scalar") self.backward(loss) self.step() return stats # and now to ignore everything from the above class Engines(dict[str, Engine]): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.setup() def setup(self): self._global_step = 0 self._micro_step = 0 self._batch_size = 0 self._global_samples = 0 @property def global_step(self): return self._global_step @property def micro_step(self): return self._micro_step @property def batch_size(self): return self._batch_size @property def global_samples(self): return self._global_samples def gather_attribute(self, *args, **kwargs): ret = {} for engine in self.values(): ret |= engine.gather_attribute(*args, **kwargs) return ret def dispatch_attribute(self, *args, **kwargs): for engine in self.values(): engine.dispatch_attribute(*args, **kwargs) def export(self, userdata={}, callback=None, dtype=None, format=None): if not format: format = cfg.weights_format format = format.lower() if dtype is None: dtype = cfg.trainer.dtype for name, engine in self.items(): module = engine.module.state_dict() lora = None save_path = cfg.ckpt_dir / name / f"fp32.{format}" config = engine.module.config if hasattr(engine.module, "config") else engine.hyper_config # safety for k, v in module.items(): module[k] = v.to(dtype) if cfg.lora is not None: lora, module = lora_get_state_dict( module, split = True ) save_path = cfg.ckpt_dir / cfg.lora.full_name / f"fp32.{format}" state_dict = { 'module': module, 'lora': lora, "stats": { "global_step": engine.global_step, "micro_step": engine.micro_step, "global_samples": engine.global_samples, "tokens_processed": engine.tokens_processed, }, "userdata": userdata, "config": config.__dict__ | {"experimental": config.experimental.__dict__} # i hate implicit aliasing rules } if lora is None: del state_dict['lora'] if callback: state_dict = callback( state_dict, config = engine.hyper_config, save_path = save_path ) torch_save(state_dict, save_path) _logger.info(f"Exported {name} to {save_path}") def save_checkpoint(self, tag=None): if not tag: tag = cfg.trainer.save_tag tag = tag.lower() if tag[:2] == "it" or tag[:4] == "step": tag = f'{self.global_step}' cfg.ckpt_dir.mkdir(parents=True, exist_ok=True) for name, engine in self.items(): if not engine._training: continue save_dir = cfg.ckpt_dir / name if cfg.lora is not None: save_dir = cfg.ckpt_dir / cfg.lora.full_name try: engine.save_checkpoint(save_dir, tag=tag) except Exception as e: _logger.warning(f'Failed to save checkpoint for engine {name}: {str(e)}') # might be better to prune before saving for safety, but [:0] returns an empty list, but I could do [:-cfg.trainer.keep_last_checkpoints - 1 if cfg.trainer.keep_last_checkpoints > 1 else None] if cfg.trainer.keep_last_checkpoints > 0 and is_global_leader(): checkpoints = [ d for d in list(save_dir.glob("*")) if d.is_dir() ] checkpoints.sort(key=lambda x: x.stat().st_mtime) checkpoints = checkpoints[:-cfg.trainer.keep_last_checkpoints] for d in checkpoints: if not d.is_dir() or not d.exists(): continue _logger.info(f"Removing {d}") for p in d.iterdir(): p.unlink() d.rmdir() def load_checkpoint(self, tag=None, training=True): if not tag: tag = cfg.trainer.load_tag for name, engine in self.items(): load_dir = cfg.ckpt_dir / name engine.load_checkpoint( tag=tag, load_dir=load_dir, load_module_strict=cfg.trainer.strict_loading, load_optimizer_states=False if cfg.trainer.load_module_only or not training else cfg.trainer.load_states, load_lr_scheduler_states=False if cfg.trainer.load_module_only or not training else cfg.trainer.load_states, load_module_only=cfg.trainer.load_module_only, ) if cfg.trainer.restart_step_count: engine.global_steps = 0 engine.mocro_step = 0 engine.global_samples = 0 engine.tokens_processed = 0 # update the LR because for some god awful reason it gets overwritten when loading from a checkpoint but only when it's not using a scheduler if cfg.hyperparameters.scheduler_type == "": self.set_lr(cfg.hyperparameters.learning_rate) self._update() def set_lr(self, lr): for engine in self.values(): if not engine._training: continue engine.set_lr(lr) def _update(self): for engine in self.values(): self._global_step = max(self._global_step, engine.global_step) self._micro_step = max(self._micro_step, engine.micro_step) self._batch_size = max(self._batch_size, engine.batch_size) self._global_samples = max(self._global_samples, engine.global_samples) def eval(self): for engine in self.values(): engine.eval() def train(self): for engine in self.values(): engine.train() def traverse(self): stats = {} for name, engine in self.items(): stat = engine.traverse() stats.update(flatten_dict({ name.split("-")[0]: stat })) return stats def quit(self): cleanup_distributed() def step(self, batch, feeder: TrainFeeder = default_feeder): total_elapsed_time = 0 stats: Any = dict() if cfg.trainer.gc_mode == 'step': do_gc() for name, engine in self.items(): if not engine._training: continue device = engine.device if cfg.trainer.gc_mode == 'substep': do_gc() start_time = time.time() tries = 4 n_ooms = torch.zeros([], device=device) batch = to_device(batch, device) if not cfg.trainer.check_for_oom: res = feeder( engine=engine, batch=batch ) else: while tries >= 0: try: res = feeder( engine=engine, batch=batch ) break except RuntimeError as e: _logger.error(f"Forward: {str(e)}") if "out of memory" not in str(e): self.save_checkpoint() raise e # shrink batch size until it's happy for k in batch: batch[k] = batch[k][:-1] if tries <= 0: # trigger OOM n_ooms += 1 else: # also do GC do_gc() continue if world_size() > 1: all_reduce(n_ooms) if n_ooms.item() > 0: self.save_checkpoint() raise RuntimeError("Out of memory during forward pass!") if res is None: continue loss, engine_stats = res engine_stats |= self.gather_attribute("scalar") n_ooms = torch.zeros([], device=device) if not cfg.trainer.check_for_oom: engine.backward(loss) else: # to-do: properly handle when one GPU throws an OOM because it just halts try: engine.backward(loss) except RuntimeError as e: _logger.error(f"Backwards: {str(e)}") if "out of memory" not in str(e): self.save_checkpoint() raise e n_ooms += 1 if world_size() > 1: all_reduce(n_ooms) if n_ooms.item() > 0: self.save_checkpoint() raise RuntimeError("Out of memory during backwards pass!") engine.step() #torch.cuda.synchronize() elapsed_time = time.time() - start_time total_elapsed_time += elapsed_time grad_norm = engine.get_global_grad_norm() loss_scale = 1 if hasattr(engine.optimizer, "loss_scale") and engine.optimizer.loss_scale is not None: loss_scale = engine.optimizer.loss_scale if grad_norm is not None: grad_norm /= loss_scale stats.update( flatten_dict( { name.split("-")[0]: dict( **engine_stats, lr=engine.get_lr()[0], grad_norm=grad_norm.item() if isinstance( grad_norm, torch.Tensor ) else grad_norm, loss_scale=loss_scale if loss_scale != 1 else None, elapsed_time=elapsed_time, engine_step=engine.global_step, samples_processed=engine.global_samples, tokens_processed=engine.tokens_processed, ) } ), ) self._update() if len(self.keys()) > 1: stats["elapsed_time"] = total_elapsed_time stats["it"] = self.global_step return stats