import math import torch import torch.nn.functional as F import traceback import numpy as np import re from typing import Literal, overload, Optional, Tuple from functools import partial from einops import rearrange from torch import Tensor, einsum, nn from torch.nn import Embedding from torch.distributions import Categorical from torch.nn.utils.rnn import pad_sequence from torch.utils.checkpoint import checkpoint from torchmetrics.classification import BinaryAccuracy, MulticlassAccuracy, MulticlassPrecision from ..utils import wrapper as ml from ..samplers import reptition_penalize, length_penalize, top_k_top_p_filtering, dynamic_temperature, top_k_logits_list, mirostat_sample try: from .transformer import SinusoidalEmbedding, Block as TransformerBlock except Exception as e: print("Error importing `transformer` arch:", e) pass try: #from .retnet import RetNetDecoder, RetNetConfig from .retnet_ts import RetNetDecoder, RetNetConfig except Exception as e: print("Error importing `retnet` arch:", e) pass from .retnet_hf import RetNetDecoder as RetNetDecoder_HF, RetNetConfig as RetNetConfig_HF """ try: except Exception as e: print("Error importing `retnet-hf` arch:", e) pass """ try: from transformers import LlamaModel, LlamaConfig except Exception as e: print("Error importing `llama` arch:", e) pass try: from transformers import MistralModel, MistralConfig except Exception as e: print("Error importing `mistral` arch:", e) pass try: from bitnet.bit_transformer import Transformer as BitNetTransformerBlock, RMSNorm as BitNetRMSNorm # re-enable logging because zetascale fucking sucks import logging logging.getLogger().setLevel(logging.DEBUG) # override for wrapping checkpointing def BitNetTransformerBlock_forward(self, x: Tensor, *args, **kwargs) -> Tensor: skip = x for attn, ffn in zip(self.layers, self.ffn_layers): if x.requires_grad and self.activation_checkpointing: x, _ = checkpoint(attn, x, x, x, is_causal=True, *args, **kwargs, use_reentrant=False) else: x, _ = attn(x, x, x, is_causal=True, *args, **kwargs) x = x + skip x = ffn(x) + x return x BitNetTransformerBlock.forward = BitNetTransformerBlock_forward # override because bitnet's BitNetTransformer includes an embedding input / classifier output layers inside of it, which isn't favorable class BitNetTransformer(nn.Module): def __init__( self, dim: int, depth: int, num_tokens: int, heads=8, ff_mult=4, activation_checkpointing = True ): super().__init__() self.transformer = BitNetTransformerBlock( dim=dim, depth=depth, heads=heads, ff_mult=ff_mult ) self.norm = BitNetRMSNorm(dim) self.transformer.activation_checkpointing = activation_checkpointing def forward(self, x): x = self.transformer(x) return self.norm( x ) """ from bitnet import BitNetTransformer def NoEmbedding_BitNetTransformer_Forward(self, x): x = self.transformer(x) return self.to_logits[0](x) BitNetTransformer.forward = NoEmbedding_BitNetTransformer_Forward """ except Exception as e: print("Error importing `bitnet` arch:", e) pass try: from transformers import MixtralModel, MixtralConfig from transformers.models.mixtral.modeling_mixtral import load_balancing_loss_func, MixtralSparseMoeBlock # This is required because batch sizes > 1 throws errors def Fixed_MixtralSparseMoeBlock_forward(self, hidden_states: torch.Tensor) -> torch.Tensor: """ """ batch_size, sequence_length, hidden_dim = hidden_states.shape hidden_states = hidden_states.reshape(-1, hidden_dim) # was view() # router_logits: (batch * sequence_length, n_experts) router_logits = self.gate(hidden_states) routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float) routing_weights, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1) routing_weights /= routing_weights.sum(dim=-1, keepdim=True) # we cast back to the input dtype routing_weights = routing_weights.to(hidden_states.dtype) final_hidden_states = torch.zeros( (batch_size * sequence_length, hidden_dim), dtype=hidden_states.dtype, device=hidden_states.device ) expert_mask = torch.nn.functional.one_hot(selected_experts, num_classes=self.num_experts).permute(2, 1, 0) for expert_idx in range(self.num_experts): expert_layer = self.experts[expert_idx] idx, top_x = torch.where(expert_mask[expert_idx]) if top_x.shape[0] == 0: continue top_x_list = top_x.tolist() idx_list = idx.tolist() current_state = hidden_states[None, top_x_list].reshape(-1, hidden_dim) current_hidden_states = expert_layer(current_state) * routing_weights[top_x_list, idx_list, None] final_hidden_states.index_add_(0, top_x, current_hidden_states.to(hidden_states.dtype)) final_hidden_states = final_hidden_states.reshape(batch_size, sequence_length, hidden_dim) return final_hidden_states, router_logits Original_MixtralSparseMoeBlock_forward = MixtralSparseMoeBlock.forward MixtralSparseMoeBlock.forward = Fixed_MixtralSparseMoeBlock_forward except Exception as e: print("Error importing `mixtral` arch:", e) AVAILABLE_ATTENTIONS = ["mem_efficient", "math"] try: from xformers.ops import LowerTriangularMask from xformers.ops.fmha import memory_efficient_attention AVAILABLE_ATTENTIONS.append("xformers") except Exception as e: print("Error while importing `xformers`", e) try: from transformers.utils import is_flash_attn_2_available if is_flash_attn_2_available(): AVAILABLE_ATTENTIONS.append("flash") except Exception as e: raise e try: from transformers.cache_utils import Cache from transformers.models.llama.modeling_llama import LlamaAttention, apply_rotary_pos_emb class Llama_Attention(LlamaAttention): def __init__(self, *args, **kwargs): if 'mode' in kwargs: self.mode = kwargs['mode'] kwargs.pop("mode") else: self.mode = "math" super().__init__(*args, **kwargs) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, output_attentions: bool = False, use_cache: bool = False, cache_position: Optional[torch.LongTensor] = None, **kwargs, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: bsz, q_len, _ = hidden_states.size() query_states = self.q_proj(hidden_states) key_states = self.k_proj(hidden_states) value_states = self.v_proj(hidden_states) query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) cos, sin = self.rotary_emb(value_states, position_ids) query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) past_key_value = getattr(self, "past_key_value", past_key_value) if past_key_value is not None: # sin and cos are specific to RoPE models; cache_position needed for the static cache cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) query_states = query_states.transpose(1, 2) key_states = key_states.transpose(1, 2) value_states = value_states.transpose(1, 2) dropout_rate = self.attention_dropout if self.training else 0.0 if self.mode == "xformers": if attention_mask is None or attention_mask[0, 0, 0, 1] == 0: attn_output = memory_efficient_attention(query_states, key_states, value_states, attn_bias=None, p=dropout_rate) else: attn_output = memory_efficient_attention(query_states, key_states, value_states, attn_bias=LowerTriangularMask(), p=dropout_rate) else: #torch.nn.attention.sdpa_kernel with torch.backends.cuda.sdp_kernel(enable_flash=self.mode == "flash", enable_math=self.mode == "math", enable_mem_efficient=self.mode == "mem_efficient"): attn_output = torch.nn.functional.scaled_dot_product_attention(query_states, key_states, value_states, attn_mask=attention_mask, dropout_p=dropout_rate) attn_weights = None attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) attn_output = self.o_proj(attn_output) return attn_output, attn_weights, past_key_value except Exception as e: print("Error creating modified `LLamaAttention`:", e) def _create_mask(l, device): """1 is valid region and 0 is invalid.""" seq = torch.arange(max(l), device=device).unsqueeze(0) # (1 t) stop = torch.tensor(l, device=device).unsqueeze(1) # (b 1) return (seq < stop).float() # (b t) def _join(x: tuple[Tensor], sep: Tensor): """ Args: x: (k t d) sep: (d) """ ret = x[0] for i in range(1, len(x)): ret = torch.cat((ret, sep[None], x[i]), dim=0) return ret def list_to_tensor(x_list: list[Tensor], pattern="t b c -> b t c"): """ Args: x_list: [(t d)] Returns: x: (? ? ?) m: (? ? ?), same as x """ l = list(map(len, x_list)) x = rearrange(pad_sequence(x_list), pattern) m = _create_mask(l, x_list[0].device) m = m.t().unsqueeze(-1) # (t b 1) m = rearrange(m, pattern) m = m.to(x) return x, m # automagically parses a batch-list and returns it as a list """ class Embedding(nn.Embedding): def forward(self, x_list: list[Tensor]) -> list[Tensor]: if len(x_list) == 0: return [] return super().forward(torch.cat(x_list)).split([*map(len, x_list)]) """ # Deprecated implementation class MultiEmbedding(nn.Module): def __init__(self, max_n_levels, n_tokens, token_dim, monolithic=False): super().__init__() self.monolithic = monolithic self.max_n_levels = max_n_levels self.n_tokens = n_tokens self.weight = nn.Parameter(torch.randn(max_n_levels, n_tokens, token_dim)) # to-do: select quant level from given quant_levels tensor if given (i.e. through the resp_emb) # I imagine this is an oversight in the NAR. def forward(self, x_list: list[Tensor], quant_levels: Tensor | None = None) -> list[Tensor]: if len(x_list) == 0: return [] # this "strategy" will reserve the weight[0] for te AR and weight[1:] for the NAR # the NAR cannot share RVQ-bin level 0 with the AR for the resp_emb if self.monolithic: w = self.weight[:1] if quant_levels is None else self.weight[1:] else: w = self.weight padded_x_list = [] for i, xi in enumerate(x_list): xi = F.one_hot(xi.to(torch.int64), num_classes=self.n_tokens) # t l' k wi = w.shape[0] - xi.shape[1] xi = F.pad(xi, (0, 0, 0, wi)) # t l k padded_x_list.append(xi.to(w)) x = torch.cat(padded_x_list) # n l k x = einsum("l k d, n l k -> n d", w, x) x_list = x.split([*map(len, x_list)]) return x_list # Embedding that sums each RVQ-bin level within a given input acoustic prompt class AudioEmbedding(nn.Module): def __init__( self, l_tokens: int, # list of number of tokens (needed because AR resps includes stop token) token_dim: int, # dimensionality of the embedding levels: int | None = None, # number of RVQ-bins (I don't remember the specifics) sums: bool = True # whether to sum all previous layers of embeddings to factor in other RVQ bin levels (I do not know which way is better) ): super().__init__() # array of embeddings # proms are [0, prom_levels] # resp are split to where [0] is for the AR, and [1:] are reserved for NAR self.embeddings = nn.ModuleList([nn.Embedding(n_tokens, token_dim) for n_tokens in l_tokens]) # weight influencer for the influence for each level (desu this should be really useless because the weights in the embedding themselves should factor this) self.weight = nn.ParameterList([nn.Parameter( torch.Tensor([1]) ) for i in range(levels)]) if levels is not None else None # self.sums = sums def forward(self, xi: Tensor, quant_levels: Tensor | None = None ) -> Tensor: # prom if quant_levels is None and xi.shape[-1] > 1: if self.sums: x = sum( [ self.embeddings[k]( xi[:, k] ) * (self.weight[k] if self.weight is not None else 1) for k in range(xi.shape[-1]) ] ) else: k = 0 # only use the most significant RVQ bin level for the input prom x = self.embeddings[k]( xi[:, k] ) * (self.weight[k] if self.weight is not None else 1) # AR resp elif quant_levels is None or quant_levels == 0: x = self.embeddings[0]( xi if len(xi.shape) == 1 else xi[:, 0] ) # NAR resp else: if self.sums: x = sum( [ self.embeddings[k+1]( xi[:, k] ) * (self.weight[k+1] if self.weight is not None else 1) for k in range(xi.shape[-1]) ] ) else: k = xi.shape[-1] - 1 # only use the previous RVQ bin level for the current resp embedding x = self.embeddings[k+1]( xi[:, k] ) * (self.weight[k+1] if self.weight is not None else 1) return x class Base(nn.Module): @property def causal(self) -> bool: raise NotImplementedError @property def arch_type(self) -> str: raise NotImplementedError @property def norm_type(self): raise NotImplementedError @property def n_prom_levels(self) -> int: raise NotImplementedError @property def n_resp_levels(self) -> int: raise NotImplementedError @property def n_max_levels(self) -> int: raise NotImplementedError @property def n_langs(self) -> int: raise NotImplementedError @property def n_tasks(self) -> int: raise NotImplementedError @property def n_tones(self) -> int: raise NotImplementedError @property def recurrent_chunk_size(self) -> int: raise NotImplementedError @property def rotary_embedding_base(self) -> float: return 10000 @property def interleave(self) -> bool: return False @property def monolithic(self) -> bool: return False @property def version(self) -> int: return 1 @property def stop_token(self): if not self.causal: raise ValueError("Not using stop token!") return self.n_tokens @property def ignore_index(self): return -100 def loss_factor(self, k): if self.config is None: return 1.0 return self.config.loss_factors[k] if k in self.config.loss_factors else 1.0 def __init__( self, n_tokens: int = 1024, d_model: int = 512, n_heads: int = 8, n_layers: int = 12, p_dropout: float = 0.1, n_experts: int = 1, l_padding: int = 0, training = True, config = None, ): super().__init__() self.training = training self.config = config self.activation_checkpointing = self.config.activation_checkpointing if self.config is not None else True self.n_tokens = n_tokens self.d_model = d_model self.n_heads = n_heads self.n_layers = n_layers self.n_experts = n_experts self.l_padding = l_padding # +1 to include the stop token # to-do: undo this dogshit mistake; tasks tokens should be delegated to its own embedding n_prom_tokens = n_tokens n_resp_tokens = n_tokens + (1 if self.causal else 0) # AR requires a stop token to... know when to stop self.text_emb = Embedding(n_tokens, d_model) self.langs_emb = None self.tones_emb = None self.tasks_emb = None if self.version == 1: # legacy n_prom_tokens += (self.n_tasks - 1) # old models have the task tokens in the prom self.proms_emb = MultiEmbedding(self.n_prom_levels, n_prom_tokens, d_model) self.resps_emb = MultiEmbedding(self.n_resp_levels, n_resp_tokens, d_model, monolithic=self.monolithic) else: # [1024] * 8 self.proms_emb = AudioEmbedding( [n_prom_tokens] * self.n_prom_levels, d_model, levels=self.n_prom_levels if self.version > 3 else None, sums=self.config.audio_embedding_sums if self.config is not None else True, ) # [1025] + [1024] * 8 self.resps_emb = AudioEmbedding( [n_resp_tokens] + [n_resp_tokens - 1] * (self.n_resp_levels - 1), d_model, levels=self.n_resp_levels if self.version > 3 else None, sums=self.config.audio_embedding_sums if self.config is not None else True ) if self.version >= 3: self.langs_emb = Embedding(self.n_langs, d_model) if self.n_langs > 0 else None self.tasks_emb = Embedding(self.n_tasks, d_model) if self.n_tasks > 0 else None if self.version >= 4: self.tones_emb = Embedding(self.n_tones, d_model) if self.n_tones > 0 else None self.sep = nn.Parameter(torch.randn(d_model)) # ick, there has to be a better way hf_attention = self.config.attention if self.config is not None else None if self.config.attention == "auto": if "flash" in AVAILABLE_ATTENTIONS: self.config.attention = "flash" elif "xformers" in AVAILABLE_ATTENTIONS: self.config.attention = "xformers" else: self.config.attention = "mem_efficient" if self.config.attention in ["xformers", "mem_efficient", "math", "flash"]: hf_attention = None if self.config.attention not in AVAILABLE_ATTENTIONS: raise ValueError(f"Requesting attention `{self.config.attention}` but is not available. Currently available: {AVAILABLE_ATTENTIONS}") if self.arch_type == "transformer": self.sin_emb = SinusoidalEmbedding(d_model) self.blocks = nn.ModuleList([TransformerBlock( d_model=d_model, n_heads=n_heads, p_dropout=p_dropout if training else 0.0, causal=self.causal, norm_type=self.norm_type, n_levels=self.n_resp_levels, ) for _ in range(n_layers) ]) elif self.arch_type in ["mistral", "mixtral"]: if n_experts <= 1: self.model = MistralModel(MistralConfig( vocab_size=n_resp_tokens, hidden_size=d_model, max_position_embeddings=75 * 60, # max-length of 60 seconds intermediate_size=d_model*4, num_hidden_layers=n_layers, num_attention_heads=n_heads, attention_dropout=p_dropout if training else 0.0, num_key_value_heads=self.config.kv_heads if self.config.kv_heads > 0 else n_heads, hidden_act="gelu", is_encoder_decoder=False, is_decoder=True, attn_implementation=hf_attention, #gradient_checkpointing=self.activation_checkpointing, )) else: self.model = MixtralModel(MixtralConfig( vocab_size =n_resp_tokens, hidden_size=d_model, max_position_embeddings=75 * 60, # max-length of 60 seconds intermediate_size=d_model*4, num_hidden_layers=n_layers, num_attention_heads=n_heads, attention_dropout=p_dropout if training else 0.0, num_key_value_heads=self.config.kv_heads if self.config.kv_heads > 0 else n_heads, sliding_window=75 * 12, # 12 second context window output_router_logits=training, hidden_act="gelu", is_encoder_decoder=False, is_decoder=True, num_local_experts=n_experts, num_experts_per_tok=min(2, n_experts), attn_implementation=hf_attention, #gradient_checkpointing=self.activation_checkpointing, )) if self.activation_checkpointing and not self.model.gradient_checkpointing: self.model.gradient_checkpointing_enable(gradient_checkpointing_kwargs=dict( use_reentrant=False )) #if training: # self.model.training = True elif self.arch_type == "llama": if n_experts <= 1: self.model = LlamaModel(LlamaConfig( vocab_size=n_resp_tokens, hidden_size=d_model, max_position_embeddings=75 * 60, # max-length of 60 seconds intermediate_size=d_model*4, num_hidden_layers=n_layers, num_attention_heads=n_heads, attention_dropout=p_dropout if training else 0.0, num_key_value_heads=n_heads, sliding_window=75 * 12, # 12 second context window hidden_act="gelu", is_encoder_decoder=False, is_decoder=True, attn_implementation=hf_attention, #gradient_checkpointing=self.activation_checkpointing, )) else: self.model = MixtralModel(MixtralConfig( vocab_size =n_resp_tokens, hidden_size=d_model, max_position_embeddings=75 * 60, # max-length of 60 seconds intermediate_size=d_model*4, num_hidden_layers=n_layers, num_attention_heads=n_heads, attention_dropout=p_dropout if training else 0.0, num_key_value_heads=n_heads, sliding_window=75 * 12, # 12 second context window output_router_logits=training, hidden_act="gelu", is_encoder_decoder=False, is_decoder=True, num_local_experts=n_experts, num_experts_per_tok=min(2, n_experts), attn_implementation=hf_attention, #gradient_checkpointing=self.activation_checkpointing, )) if self.activation_checkpointing and not self.model.gradient_checkpointing: self.model.gradient_checkpointing_enable(gradient_checkpointing_kwargs=dict( use_reentrant=False )) #if training: # self.model.training = True elif self.arch_type == "retnet": kwargs = dict( vocab_size=n_resp_tokens, decoder_embed_dim=d_model, decoder_value_embed_dim =d_model * 2, decoder_retention_heads=n_heads, decoder_ffn_embed_dim=d_model * 4, decoder_layers=n_layers, dropout=p_dropout if training else 0.0, checkpoint_activations=self.activation_checkpointing, activation_fn="gelu", use_layernorm=self.version < 3, use_biases=self.version < 3, use_glu=self.version >= 3, chunkwise_recurrent=self.causal and self.recurrent_chunk_size > 0, recurrent_chunkwise_size=self.recurrent_chunk_size if self.causal else 0, no_output_layer=True, decoder_normalize_before=True, rotary_embedding_base=self.rotary_embedding_base, # 10000 ) if n_experts > 1: kwargs.update(dict( use_xmoe=True, moe_freq=1, moe_expert_count=n_experts, moe_gating_use_fp32=False, )) self.model = RetNetDecoder(RetNetConfig(**kwargs)) elif self.arch_type == "retnet-hf": kwargs = dict( vocab_size=n_resp_tokens, decoder_embed_dim=d_model, decoder_value_embed_dim =d_model * 2, decoder_retention_heads=n_heads, decoder_ffn_embed_dim=d_model * 4, decoder_layers=n_layers, dropout=p_dropout if training else 0.0, checkpoint_activations=self.activation_checkpointing, activation_fn="gelu", use_glu=False, # self.version >= 3, recurrent_chunk_size=self.recurrent_chunk_size if self.causal else 0, decoder_normalize_before=True, deepnorm=False, subln=True, ) self.model = RetNetDecoder_HF(RetNetConfig_HF(**kwargs)) if self.activation_checkpointing and not self.model.gradient_checkpointing: self.model.gradient_checkpointing_enable(gradient_checkpointing_kwargs=dict( use_reentrant=False )) elif self.arch_type == "bitnet": self.model = BitNetTransformer( num_tokens=n_resp_tokens, dim=d_model, depth=n_layers, heads=n_heads, ff_mult=4, activation_checkpointing=self.activation_checkpointing, ) else: raise RuntimeError(f'Unknown arch specified: {self.arch_type}') if self.config.attention in ["xformers", "auto", "mem_efficient", "math", "flash"]: self.model = ml.replace_attention( self.model, klass=Llama_Attention, target=LlamaAttention, mode=self.config.attention ) self.classifier = nn.Linear(d_model, n_resp_tokens) self.accuracy_metric = MulticlassAccuracy( n_resp_tokens, top_k=10, average="micro", multidim_average="global", ignore_index=self.ignore_index, ) self.precision_metric = MulticlassPrecision( n_resp_tokens, top_k=10, average="micro", multidim_average="global", ignore_index=self.ignore_index, ) def _forward( self, inputs, mask = None, state = None, ): x = inputs m = mask.squeeze(-1).int() aux_loss = None """ # Broken if state is not None and (self.arch_type == "retnet" or self.arch_type == "retnet-hf"): # prefill if len(state) == 0: prefill_size = x.shape[1] # run the initial prompt to fill the KV cache if self.arch_type == "retnet": for n in range(prefill_size): xi = x[:, n, :].unsqueeze(1) self.model(xi, incremental_state=state, token_embeddings=xi, features_only=True) elif self.arch_type == "retnet-hf": state = None for n in range(prefill_size): xi = x[:, n, :].unsqueeze(1) kwargs = dict( attention_mask=m, inputs_embeds=xi, past_key_values=state, use_cache=True, forward_impl='recurrent', # return_dict=True, ) out = self.model(**kwargs) state = out.past_key_values # grab last token(s) x = x[:, -1, :].unsqueeze(1) """ # HF transformer derived model if self.arch_type in ["llama", "mistral", "mixtral"]: kwargs = dict( attention_mask=m, inputs_embeds=x, past_key_values=state, use_cache=True, # return_dict=True, ) if self.n_experts > 1 and targ_list is not None: kwargs["output_router_logits"] = True t = self.model(**kwargs) x = t[0] if state is not None: state = t[1] if self.n_experts > 1 and targ_list is not None: router_logits = t[-1] aux_loss = self.model.config.router_aux_loss_coef * load_balancing_loss_func( router_logits, self.model.config.num_local_experts, self.model.config.num_experts_per_tok ) elif self.arch_type == "transformer": # ensures we specify a quant_level for the transformer implementation's AdaLN l = torch.zeros((batch_size,), dtype=torch.int32) if quant_levels is None else quant_levels l = l.to(device) # inject position information x = self.sin_emb.add_pe(x) # pass our inputs through the transformer for block in self.blocks: x = block(x, m, l) elif self.arch_type == "retnet": # pass our inputs through the RetNet x, _ = self.model(x, incremental_state=state, token_embeddings=x, features_only=True) if _ is not None and "l_aux" in _ and self.n_experts > 1: aux_loss = torch.sum(torch.stack([ t for t in _["l_aux"] if t is not None])) * 0.001 elif self.arch_type == "retnet-hf": first = state is None or len(state) == 0 kwargs = dict( attention_mask=m, inputs_embeds=x if first else x[:, -1, :].unsqueeze(1), past_key_values=None if first else state, use_cache=True, forward_impl='parallel' if first else 'recurrent', return_dict=True, ) out = self.model(**kwargs) x = out.last_hidden_state if state is not None: state = out.past_key_values elif self.arch_type == "bitnet": x = self.model(x) # output projection layer with masking x = self.classifier(x) * mask return x, state, aux_loss def inputs( self, text_list: list[Tensor], proms_list: list[Tensor], resps_list: list[Tensor], targ_list: list[Tensor] | None = None, lang_list: list[Tensor] | None = None, tone_list: list[Tensor] | None = None, ): device = text_list[0].device batch_size = len(text_list) inputs = [ [] for _ in range(batch_size) ] for i in range(batch_size): if text_list is not None: inputs[i].append( ( "text", text_list[i] ) ) if proms_list is not None: inputs[i].append( ( "prom", proms_list[i] ) ) if resps_list is not None: inputs[i].append( ( "resp", resps_list[i] ) ) if targ_list is not None: inputs[i].append( ( "targ", targ_list[i] ) ) return inputs def inputs_to_embeddings( self, inputs: list, quant_levels: Tensor | None = None ): x_list = [] for batch_index, batch_input in enumerate(inputs): batch = [] quant_level = quant_levels[batch_index] if quant_levels is not None else None for name, input in batch_input: embedding = None if name == "text": embedding = self.text_emb( input ) elif name == "lang": embedding = self.langs_emb( input ) elif name == "prom": embedding = self.proms_emb( input ) elif name == "tone": embedding = self.tones_emb( input ) elif name == "resp": embedding = self.resps_emb( input, quant_level ) else: continue batch.append(embedding) x_list.append( _join( batch, self.sep ) ) return x_list def calc_loss( self, inputs: list, logits, quant_levels: Tensor | None = None, ): # old, "naive" way, no loss factoring if not self.config.loss_factors: target_list = [] for batch in inputs: target = [] for name, input in batch: if name == "prom": target.append( torch.full_like(input[..., 0], self.ignore_index) ) elif name in ["text", "lang", "tone", "targ"]: target.append( input ) target_list.append( _join( target, torch.tensor(self.ignore_index, device=target[-1].device) ) ) # modify only for the AR so it can properly behave like a transformer for i in range(len(target_list)): if quant_levels is not None and quant_levels[i] > 0: continue logits[i] = logits[i][..., :-1, :] # shift the target so that token n... target_list[i] = target_list[i][..., 1:] # predicts token n + 1 target = torch.cat( target_list ) inputs = torch.cat( logits ) self.loss = dict( # "nll" was in the original implementation and should actually just be called something else nll = F.cross_entropy( inputs, target, ignore_index=self.ignore_index ) ) self.stats = dict( acc = self.accuracy_metric( inputs, target ), # precision = self.precision_metric( inputs, target ), ) return self.loss = dict() self.stats = dict(acc = dict()) info = {} for i, batch in enumerate( inputs ): quant_level = quant_levels[i] if quant_levels is not None else None it = 0 for name, input in batch: # do not use resp if name == "resp": continue # rename to resp if name == "targ": name = "resp" # select prom level elif name == "prom" and quant_level is not None: input = input[:, quant_level] seq_len = input.shape[0] logit = logits[i][it:it+seq_len] it += seq_len + 1 # +1 to incorporate the separator # for the AR, shift sequence so that it predicts the next token if quant_level is None or quant_level == 0: logit = logit[..., :-1, :] # get all but the final logit input = input[..., 1:] # shift sequence to the right by one if name not in info: info[name] = { "targets": [], "logits": [], } info[name]["targets"].append( input.contiguous() ) info[name]["logits"].append( logit.contiguous() ) for name, batch in info.items(): loss_factor = self.loss_factor(name) if loss_factor == 0.0: continue targets = torch.cat( batch["targets"] ).long() inputs = torch.cat( batch["logits"] ) self.loss[name] = F.cross_entropy( inputs, targets, ignore_index=self.ignore_index ) * loss_factor self.stats["acc"][name] = self.accuracy_metric( inputs, targets ) # to-do: compute loss per individual batch to scale per RVQ level """ rvq_loss_factor = self.loss_factor("quant") if isinstance( rvq_loss_factor, list ): ... """ def forward( self, inputs: list, quant_levels: Tensor | None = None, state: dict | list | None = None, ): x_list = self.inputs_to_embeddings( inputs, quant_levels ) x, m = list_to_tensor(x_list) # yes, there's a better way. training = False for b_i in range(len(inputs)): for i in range(len(inputs[b_i])): name, input = inputs[b_i][i] if name == "targ": training = True device = x.device batch_size = len(x_list) # pad our input and mask, but retain the original length by doing it after if self.l_padding and x.shape[1] % self.l_padding != 0: # pad input shape = list(x.shape) shape[1] = self.l_padding - shape[1] % self.l_padding padding = torch.zeros(shape, dtype=x.dtype, device=x.device) x = torch.cat([x, padding], dim=1) # pad mask shape[2] = 1 padding = torch.zeros(shape, dtype=x.dtype, device=x.device) m = torch.cat([m, padding], dim=1) x, state, aux_loss = self._forward( inputs=x, mask=m, state=state, ) # Remove padding logits = [ hi[:li] for hi, li in zip(x, map(len, x_list)) ] # compute loss if the target is given if training: self.calc_loss( inputs=inputs, logits=logits, quant_levels=quant_levels ) # include any additional losses (for example: MoE router) if aux_loss is not None: self.loss["aux_loss"] = aux_loss return (logits, state) if state is not None else logits def sample( self, logits: list[Tensor], resps_list: list[Tensor], quant_levels: Tensor | None = None, temperature: float = 1.0, min_temperature: float = -1.0, top_k: int = -100, top_p: float = 1.0, repetition_penalty: float = 1.0, repetition_penalty_decay: float = 0.0, length_penalty: float = 0.0, beam_width: int = 0, mirostat: list[dict] | None = None, ): if min_temperature < 0: min_temperature = temperature # (NAR) return the entire generated response if quant_levels is not None: logits = [ logit[-l:] for logit, l in zip(logits, map(len, resps_list)) ] # (AR chunkwise) return the last chunkwise piece elif self.causal and self.recurrent_chunk_size > 0: logits = [ logit[-l:] for logit, l in zip(logits, self.recurrent_chunk_size) ] # (AR) return just the last code else: logits = [ logit[-1:] for logit in logits ] devices = [ logit.device for logit in logits ] logits = [ logit.to(device="cpu", dtype=logit.dtype if logit.dtype != torch.float16 else torch.float32) for logit in logits ] # perform repetition penalizing logits = [ reptition_penalize(logit, previous=resps[:, -1], factor=repetition_penalty, decay=repetition_penalty_decay) for logit, resps in zip( logits, resps_list ) ] # (AR) perform length penalizing if quant_levels is None and self.causal: logits = [ length_penalize(logit, length=l + 1, factor=length_penalty, token=self.stop_token) for logit, l in zip( logits, map(len, resps_list) ) ] # perform top_k/top_p filtering of our logits if top_k > 0 or top_p < 1.0: logits = [ top_k_top_p_filtering(logit, top_k=top_k, top_p=top_p) for logit in logits ] # trigger dynamic temperature sampling if the minimum temperature is not the same as the sampling temperature # epsilon float comparison because I don't trust Python if abs(temperature - min_temperature) >= 0.001: logits = [ dynamic_temperature(logit, temperature=temperature, min_temperature=min_temperature) for logit in logits ] else: logits = [ logit / temperature for logit in logits ] # do mirostat sampling # currently incompatible with beam searching with the way the two are implemented, perhaps a night of brain bashing can make the two work if mirostat is not None: # mirostat sampling return [ mirostat_sample(logit, state=state) for logit, state in zip(logits, mirostat) ] # do beam search (naive implementation) # picks the top-k across all batches, and re-batches those resultant tokens # returns the logit scores as well to be P-concatted with the previous scores # to-do: not naively implement beam searching if beam_width > 1: candidates = top_k_logits_list( logits, beam_width ) res = [ torch.tensor(token, dtype=torch.int16).unsqueeze(dim=-1) for batch, token in candidates ] scores = [ logits[batch].flatten()[token] for batch, token in candidates ] return res, scores # and sample return [ Categorical(logits=logit).sample() for logit in logits ]