""" # Handles processing audio provided through --input-audio of adequately annotated transcriptions provided through --input-metadata (through transcribe.py) # Outputs NumPy objects containing quantized audio and adequate metadata for use of loading in the trainer through --output-dataset """ import os import json import argparse import torch import torchaudio import numpy as np import logging from itertools import combinations _logger = logging.getLogger(__name__) from tqdm.auto import tqdm from pathlib import Path import torchaudio.functional as F import torchaudio.transforms as T from ..config import cfg from ..utils import truncate_json # need to validate if this is safe to import before modifying the config from .g2p import encode as phonemize from .qnt import encode as quantize, trim, convert_audio from ..webui import init_tts def load_audio( path ): waveform, sr = torchaudio.load( path ) # mix channels if waveform.shape[0] > 1: waveform = torch.mean(waveform, dim=0, keepdim=True) # resample waveform, sr = convert_audio(waveform, sr, cfg.sample_rate, 1), cfg.sample_rate return waveform, sr def process( speaker_path, yaml, text=False, audio_backend="encodec", device="cuda", dtype="float16", amp=False, verbose=False, metadata_path=None, ): cfg.set_audio_backend(audio_backend) artifact_extension = cfg.audio_backend_extension cfg.inference.weight_dtype = dtype # "bfloat16" cfg.inference.amp = amp # False # easy way to load the model and handle encoding audio tts = init_tts( yaml=yaml, restart=False, device=device, dtype=dtype ) queue = [] features = {} similarities = {} sorted_similarities = {} mfcc = T.MFCC(sample_rate=cfg.sample_rate) # compute features (embeddings if quantized already, MFCC features if raw audio) for filename in tqdm(os.listdir(f'./{speaker_path}/'), desc=f"Encoding '{speaker_path}'", disable=not verbose): extension = filename.split(".")[-1] filename = filename.replace(f".{extension}", "") if text: if extension not in artifact_extension: raise Exception("!") artifact = np.load(f'./{speaker_path}/{filename}.{extension}', allow_pickle=True)[()] lang = artifact["metadata"]["language"] if "language" in artifact["metadata"]["language"] else "en" if "phonemes" in artifact["metadata"]: phn = artifact["metadata"]["phonemes"] elif "text" in artifact["metadata"]: txt = artifact["metadata"]["text"] phn = phonemize( txt, language=lang ) phn = phn.replace("(en)", "") if lang != "en": phn = phn.replace(f"({metadata['language']})", "") features[filename] = tts.text_embedding( phn ) else: # treat embeddings as features, if provided quantized audio if extension in artifact_extension: artifact = np.load(f'./{speaker_path}/{filename}.{extension}', allow_pickle=True)[()] qnt = torch.from_numpy(artifact["codes"].astype(int))[0].t().to(dtype=torch.int16, device=device) qnt = trim( qnt, int( cfg.dataset.frames_per_second * 3 ) ) features[filename] = tts.audio_embedding( qnt ) # try and extract features from the raw audio itself else: # qnt = tts.encode_audio(f'./{speaker_path}/{filename}', trim_length=3.0).to(device) wav, sr = load_audio( f'./{speaker_path}/{filename}.{extension}' ) features[filename] = mfcc(wav.to(device))[0].t() keys = list(features.keys()) key_range = range(len(keys)) # queue = [ (index_a, index_b) for index_b in key_range for index_a in key_range if index_a != index_b ] queue = list(combinations(key_range, 2)) # compute similarities for every utternace for key in tqdm(queue, desc="Computing similarities", disable=not verbose): index_a, index_b = key filename_a, filename_b = keys[index_a], keys[index_b] swapped_key = (index_b, index_a) if swapped_key in similarities: similarities[key] = similarities[swapped_key] continue shortest = min( features[filename_a].shape[0], features[filename_b].shape[0] ) similarity = torch.nn.functional.cosine_similarity(features[filename_a][:shortest, :], features[filename_b][:shortest, :], dim=1).mean().item() similarities[key] = similarity if index_a not in sorted_similarities: sorted_similarities[index_a] = {} if index_b not in sorted_similarities[index_a]: sorted_similarities[index_a][index_b] = similarity if index_b not in sorted_similarities: sorted_similarities[index_b] = {} if index_a not in sorted_similarities[index_b]: sorted_similarities[index_b][index_a] = similarity metadata = None if metadata_path is not None: if metadata_path.exists(): metadata = json.loads(open( metadata_path, "r", encoding="utf-8" ).read()) else: metadata = {} # sort similarities scores for key, sorted_similarity in sorted_similarities.items(): sorted_similarities[key] = sorted([ ( key, similarity ) for key, similarity in sorted_similarity.items() ], key=lambda x: x[1], reverse=True) most_filename, most_score = sorted_similarities[key][0] least_filename, least_score = sorted_similarities[key][-1] filename = keys[key] if metadata is not None: if filename not in metadata: metadata[filename] = {} metadata[filename]["similar"] = sorted_similarities[key] #if verbose: # print( f'{filename}:\n\tMost: {most_filename} ({most_score:.3f})\n\tLeast: {least_filename} ({least_score:.3f})' ) if metadata is not None: with open(str(metadata_path), "w", encoding="utf-8") as f: serialized = json.dumps( metadata ) serialized = truncate_json( serialized ) f.write( serialized ) return sorted_similarities def main(): parser = argparse.ArgumentParser() parser.add_argument("--input-speaker", type=Path, default=None) parser.add_argument("--use-dataset", action="store_true") parser.add_argument("--yaml", type=Path) parser.add_argument("--text", action="store_true") parser.add_argument("--audio-backend", type=str, default="encodec") parser.add_argument("--dtype", type=str, default="bfloat16") parser.add_argument("--amp", action="store_true") parser.add_argument("--device", type=str, default="cuda") args = parser.parse_args() if args.use_dataset: cfg.metadata_dir.mkdir(parents=True, exist_ok=True) def add( dir, type="training", audios=True, texts=True ): name = str(dir) name = name.replace(str(cfg.data_dir), "") speaker_name = name if "LibriTTS-R" in speaker_name: speaker_name = speaker_name.replace("LibriTTS-R", "LibriVox") process( speaker_path=cfg.data_dir / speaker_name, metadata_path=cfg.metadata_dir / f'{speaker_name}.json', yaml=args.yaml, text=args.text, audio_backend=args.audio_backend, device=args.device, dtype=args.dtype, amp=args.amp, verbose=True, ) # training for data_dir in tqdm(sorted(cfg.dataset.training), desc="Processing Training"): add( data_dir, type="training" ) # validation for data_dir in tqdm(sorted(cfg.dataset.validation), desc='Processing Validation'): add( data_dir, type="validation" ) # noise for data_dir in tqdm(sorted(cfg.dataset.noise), desc='Processing Noise'): add( data_dir, type="noise", texts=False ) elif args.input_speaker: process( speaker_path=args.input_speaker, yaml=args.yaml, text=args.text, audio_backend=args.audio_backend, device=args.device, dtype=args.dtype, amp=args.amp, verbose=True, ) else: raise Exception("!") if __name__ == "__main__": main()