# todo: clean this mess up from .config import cfg from .data import create_train_val_dataloader, get_random_prompt, tokenize from .emb import qnt, g2p from .utils import setup_logging, to_device, trainer, flatten_dict, do_gc from .data import fold_inputs, unfold_outputs from .utils.distributed import is_global_leader import auraloss import json import logging import random import torch import torch.nn.functional as F import traceback import shutil from collections import defaultdict from tqdm import tqdm import argparse _logger = logging.getLogger(__name__) mel_stft_loss = auraloss.freq.MelSTFTLoss(cfg.sample_rate, device="cpu") def train_feeder(engine, batch, teacher=None): with torch.autocast("cuda", dtype=cfg.trainer.dtype, enabled=cfg.trainer.amp): batch_size = len(batch["text"]) engine.current_batch_size = batch_size output = engine( text_list=batch["text"], proms_list=batch["proms"], resps_list=batch["resps"], lang_list=batch["lang"], tone_list=batch["tone"], task_list=batch["task"], training=True, ) # get soft targets from teacher if teacher is not None: # extract inputs forwarded to model inputs = output.inputs # grab the teacher's logits with torch.no_grad(): teacher_output = teacher.forward_super( inputs=inputs, ) # KD hyperparameters T = cfg.hyperparameters.teacher_temperature A = cfg.hyperparameters.teacher_alpha L = cfg.hyperparameters.teacher_loss_fn # determine the output length for each batch (because blah blah some embeddings don't map to a discrete token anyways) # we could recreate the target sequence with the ignore indices put in, but that's agony student_logits = [ logit / T for logit in output.logits ] teacher_logits = [ logit / T for logit in teacher_output.logits ] if engine.module.ignore_inputs_for_loss: task_outputs = { "tts": "resp", "stt": "text", "len": "len", } output_lens = [ 0 for _ in range(batch_size) ] for batch_index, _batch in enumerate(inputs): task_type = "tts" for name, input in _batch: if name == "task": task_type = input for name, input in _batch: if name == task_outputs.get(task_type, name): output_lens[batch_index] = input.shape[0] # create probability distributions (literature says to have the students already log'd but not the teacher) student_logits = [ logit[-l:] for logit, l in zip( student_logits, output_lens ) ] teacher_logits = [ logit[-l:] for logit, l in zip( teacher_logits, output_lens ) ] if L == "kl": student_probs = [ F.log_softmax( logit, dim=-1 ) for logit in student_logits ] teacher_probs = [ F.log_softmax( logit, dim=-1 ) for logit in teacher_logits ] soft_losses = [ F.kl_div( student, teacher, reduction='batchmean', log_target=True ) for student, teacher in zip( student_probs, teacher_probs ) ] elif L == "mse": soft_losses = [ F.mse_loss( student, teacher ) for student, teacher in zip( student_logits, teacher_logits ) ] for k in engine.module.loss.keys(): engine.module.loss[k] *= (1.0 - A) engine.module.loss[L] = torch.stack(soft_losses).sum() * A * (T ** 2) / batch_size losses = engine.gather_attribute("loss") stat = engine.gather_attribute("stats") loss = torch.stack([*losses.values()]).sum() if torch.isnan(loss).any(): return stats = {} stats |= {k: v.item() for k, v in losses.items()} stats |= {k: v.item() for k, v in stat.items()} engine.tokens_processed += sum([ text.shape[0] for text in batch["text"] ]) engine.tokens_processed += sum([ resps.shape[0] for resps in batch["resps"] ]) return loss, stats @torch.inference_mode() def run_eval(engines, eval_name, dl, args=None): stats = defaultdict(list) stats['loss'] = [] if cfg.evaluation.size == 0: return def process( name, batch, resps_list ): for speaker, path, ref, hyp, prom, task in zip(batch["spkr_name"], batch["path"], batch["resps"], resps_list, batch["proms"], batch["task"]): if len(hyp) == 0: continue filename = f'{speaker}_{path.parts[-1]}' if task != "tts": filename = f"{filename}_{task}" # flatten prom if not isinstance(prom, torch.Tensor) and prom is not None: prom = torch.concat([ p for p in prom if isinstance(p, torch.Tensor) ]) # to-do, refine the output dir to be sane-er ref_path = (cfg.log_dir / str(engines.global_step) / "ref" / filename).with_suffix(".wav") hyp_path = (cfg.log_dir / str(engines.global_step) / name / eval_name / filename).with_suffix(".wav") prom_path = (cfg.log_dir / str(engines.global_step) / name / "prom" / filename).with_suffix(".wav") hyp_path.parent.mkdir(parents=True, exist_ok=True) ref_path.parent.mkdir(parents=True, exist_ok=True) prom_path.parent.mkdir(parents=True, exist_ok=True) hyp_audio, sr = qnt.decode_to_file(hyp, hyp_path) if ref is not None: ref_audio, sr = qnt.decode_to_file(ref, ref_path) if prom is not None: prom_audio, sr = qnt.decode_to_file(prom, prom_path) # naive loss calculation # to-do: find a better way to calculate this / a better metric if ref is not None: min_length = min( ref_audio.shape[-1], hyp_audio.shape[-1] ) ref_audio = ref_audio[..., 0:min_length] hyp_audio = hyp_audio[..., 0:min_length] stats['loss'].append(mel_stft_loss(hyp_audio[None, :, :], ref_audio[None, :, :]).item()) processed = 0 while processed < cfg.evaluation.size: # directly randomly sample if eval_name == "subtrain": # sample from dataset # to-do: derive from current iteration samples = [ to_device(dl.dataset[random.randint( 0, len( dl.dataset ) )], cfg.device) for sample in range( cfg.evaluation.batch_size ) ] # collate manually batch = {k: [s[k] for s in samples] for k in samples[0]} else: batch = to_device(next(iter(dl)), cfg.device) # limit to eval batch size in the event we somehow have a weird dataloader for key in batch.keys(): batch[key] = batch[key][:cfg.evaluation.batch_size] batch_size = len(batch["text"]) # to-do: eval for text tasks has_stt = False for i, task in enumerate( batch["task"] ): # easier to just change it to a tts task than drop stt tasks from the batch if task == "stt": # has_stt = True batch["task"][i] = "tts" batch["proms"][i] = batch["resps"][i][:75*3, :] # random prompts requested if args and args.eval_random_text_prompts and eval_name == "subtrain": for i, _ in enumerate(batch["text"]): batch["text"][i] = get_random_prompt(tokenized=True).to(device=cfg.device) batch["resps"][i] = None processed += batch_size for name in engines: engine = engines[name] base_kwargs = dict( text_list=batch["text"], proms_list=batch["proms"], lang_list=batch["lang"], task_list=batch["task"], training=False, ) if engine.hyper_config.experimental.hf: resps_list = engine( **base_kwargs ) elif "len" in engine.hyper_config.capabilities: kwargs = base_kwargs | cfg.evaluation.kwargs max_steps = kwargs.pop("max_steps", 500) if "denoise_start" in kwargs: len_list = [ resp.shape[0] for resp in batch["resps"] ] kwargs["resps_list"] = [ resp[:, :1] for resp in batch["resps"] ] else: len_list = engine( max_steps=5, **kwargs ) len_list = [ min( l, max_steps ) for l in len_list ] kwargs = base_kwargs | cfg.evaluation.kwargs resps_list = engine( **kwargs, len_list=len_list ) else: if "ar" in engine.hyper_config.capabilities: kwargs = base_kwargs | cfg.evaluation.kwargs resps_list = engine( **kwargs ) else: resps_list = [ resp[:, 0] for resp in batch["resps"] ] if "nar" in engine.hyper_config.capabilities: kwargs = base_kwargs | cfg.evaluation.kwargs resps_list = engine( **kwargs, resps_list=resps_list ) process( name, batch, resps_list ) # evaluate why it's so slow if has_stt: max_steps = max( [ text.shape[0] for text in batch["text"] ] ) kwargs["text_list"] = None kwargs["task_list"] = [ "stt" for _ in range(batch_size) ] kwargs["proms_list"] = [ ["stt"] for _ in range(batch_size) ] kwargs["resps_list"] = batch["resps"] text_list = engine( **kwargs, max_steps=max_steps, sampling_temperature=0.0) text_list = [ cfg.tokenizer.decode( text ) for i, text in enumerate( text_list ) ] _logger.info(f"Validation Metrics (STT): {text_list}") stats = {k: sum(v) / len(v) for k, v in stats.items() if v} engines_stats = { f'{name}.{eval_name}': stats, "it": engines.global_step, } #engines_stats['epoch'] = iteration * cfg.hyperparameters.gradient_accumulation_steps / len(dl) _logger.info(f"Validation Metrics: {json.dumps(engines_stats)}.") def train(): parser = argparse.ArgumentParser("VALL-E TTS") parser.add_argument("--eval", action="store_true", default=None) parser.add_argument("--eval-random-text-prompts", action="store_true", default=None) #parser.add_argument("--eval-random-audio-prompts", action="store_true", default=None) args, unknown = parser.parse_known_args() # create log folder setup_logging(cfg.log_dir) # copy config yaml to backup if cfg.yaml_path is not None and is_global_leader(): shutil.copy( cfg.yaml_path, cfg.log_dir / "config.yaml" ) # create dataloaders train_dl, val_dl = create_train_val_dataloader() # evaluation lambda def eval_fn(engines): do_gc() engines.eval() # wrapped in a try block because it's sometimes prone to breaking try: run_eval(engines, "subtrain", train_dl, args) run_eval(engines, "val", val_dl, args) except Exception as e: _logger.warning(f"Error occurred while performing eval: {str(e)}") _logger.warning(traceback.format_exc()) engines.train() qnt.unload_model() do_gc() # unload EnCodec if it's already loaded qnt.unload_model() # only eval is requested if args.eval: return eval_fn(engines=trainer.load_engines()) """ # start web UI if cfg.trainer.load_webui: from .webui import start start(lock=False) """ # pre-training config validation if cfg.model.experimental.layerskip and cfg.trainer.weight_dtype == "float16": _logger.warning(f"Training with LayerSkip enabled with float16 may result in frying the model if the loss scale gets too small (<=8K) or with too large of a de facto batch size (>512 samples).") # train trainer.train( train_dl=train_dl, train_feeder=train_feeder, eval_fn=eval_fn, ) if __name__ == "__main__": # to-do: for DDP, spawn multiprocess instead of requiring `torchrun --nnodes=1 --nproc-per-node=4 -m vall_e.train yaml="./data/config.yaml"` train()