import copy
import diskcache
import h5py
import json
import os
import subprocess
import sys
import time
import torch
from dataclasses import asdict, dataclass, field
from functools import cached_property
from pathlib import Path
from omegaconf import OmegaConf
from .utils.distributed import world_size
# Yuck
from transformers import PreTrainedTokenizerFast
@dataclass()
class _Config:
cfg_path: str | None = None
@property
def relpath(self):
return Path(self.cfg_path)
@property
def cache_dir(self):
return self.relpath / ".cache"
@property
def data_dir(self):
return self.relpath / "data"
@property
def metadata_dir(self):
return self.relpath / "metadata"
@property
def ckpt_dir(self):
return self.relpath / "ckpt"
@property
def log_dir(self):
return self.relpath / "logs" / str(self.start_time)
@cached_property
def start_time(self):
return int(time.time())
@cached_property
def git_commit(self):
try:
cmd = "git rev-parse HEAD"
return subprocess.check_output(cmd.split()).decode("utf8").strip()
except:
return ""
@cached_property
def git_status(self):
try:
cmd = "git status"
return subprocess.check_output(cmd.split()).decode("utf8").strip()
except:
return ""
def dumps(self):
data = {k: getattr(self, k) for k in dir(self) if not k.startswith("__")}
data = {k: v for k, v in data.items() if not callable(v)}
return json.dumps(data, indent=2, default=str)
def dump(self, path=None):
if path is None:
path = self.log_dir / "cfg.json"
path.parent.mkdir(parents=True, exist_ok=True)
with open(path, "w") as f:
f.write(self.dumps())
@staticmethod
def _is_cfg_argv(s):
return "=" in s and "--" not in s
@classmethod
def from_yaml( cls, yaml_path ):
return cls.from_cli( [f'yaml="{yaml_path}"'] )
@classmethod
def from_cli(cls, args=sys.argv):
cli_cfg = OmegaConf.from_cli([s for s in args if cls._is_cfg_argv(s)])
# Replace argv to ensure there are no omegaconf options, for compatibility with argparse.
sys.argv = [s for s in sys.argv if not cls._is_cfg_argv(s)]
if cli_cfg.get("help"):
print(f"Configurable hyperparameters with their default values:")
print(json.dumps(asdict(cls()), indent=2, default=str))
exit()
if "yaml" in cli_cfg:
yaml_cfg = OmegaConf.load(cli_cfg.yaml)
yaml_path = Path(cli_cfg.yaml).absolute()
cfg_path = Path(*yaml_path.relative_to(Path.cwd()).parts[:-1])
cfg_path = cfg_path.with_suffix("")
cfg_path = f'./{cfg_path}'
yaml_cfg.setdefault("cfg_path", cfg_path)
cli_cfg.pop("yaml")
else:
yaml_cfg = {}
merged = OmegaConf.merge(yaml_cfg, cli_cfg)
return cls(**dict(merged))
def __repr__(self):
return str(self)
def __str__(self):
return self.dumps()
@dataclass()
class Dataset:
training: list[Path] = field(default_factory=lambda: [])
validation: list[Path] = field(default_factory=lambda: [])
noise: list[Path] = field(default_factory=lambda: [])
temp: list[Path] = field(default_factory=lambda: [])
speaker_name_getter: str = "lambda p: f'{p.parts[-3]}_{p.parts[-2]}'"
speaker_group_getter: str = "lambda p: f'{p.parts[-3]}'"
speaker_languages: dict = field(default_factory=lambda: {}) # dict where keys are the language codes and values are the speaker groups
hdf5_name: str = "data.h5"
use_hdf5: bool = False
use_metadata: bool = False
hdf5_flag: str = "a"
validate: bool = True
workers: int = 8
cache: bool = True
phones_range: list[int] = field(default_factory=lambda: [4, 256])
duration_range: list[float] = field(default_factory=lambda: [1.0, 12.0])
prompt_duration_range: list[float] = field(default_factory=lambda: [3.0, 6.0])
min_utterances: int = 2
random_utterance: float = 1.0
max_prompts: int = 3
prompt_duration: float = 0.0 # legacy
max_resps: int = 1
p_resp_append: float = 1.0
sample_type: str = "path" # path | speaker
tasks_list: list[str] = field(default_factory=lambda: ["tts"])
_frames_per_second: int = 0 # allows setting your own hint
@cached_property
def frames_per_second(self):
if self._frames_per_second > 0:
return self._frames_per_second
if cfg.inference.audio_backend == "dac":
# using the 44KHz model with 24KHz sources has a frame rate of 41Hz
if cfg.variable_sample_rate and cfg.sample_rate == 24_000:
return 41
if cfg.sample_rate == 44_000:
return 86
if cfg.sample_rate == 16_000:
return 50
# 24Khz Encodec / Vocos and incidentally DAC are all at 75Hz
return 75
@property
def min_phones(self):
return self.phones_range[0]
@property
def max_phones(self):
return self.phones_range[1]
@property
def min_duration(self):
return self.duration_range[0]
@property
def max_duration(self):
return self.duration_range[1]
@dataclass()
class Model:
_max_levels: int = 0
_embeddings: str | None = None
name: str = "" # vanity name for the model
version: int = 1 # 1 = old with MultiEmbedding, 2 = new with AudioEmbedding
size: str | dict = "full" # preset string or explicitly defined dimensionality
resp_levels: int = 1 # RVQ-bin levels this model targets for outputs
prom_levels: int = 8 # RVQ-bin levels this model accepts as an input prompt
tasks: int = 8 # ["tts", "ns", "sr", "tse", "cse", "nse"] and leaves two more for anything else I want (like "svc")
langs: int = 1 # defined languages
tones: int = 1 # defined tones
experts: int = 1
arch_type: str = "retnet" # or "transformer""
training: bool = True # unneeded now
interleave: bool = False # use an interleaved AR rather than a split AR + NAR (experimental, worse performance and results)
p_ar_level: float | str = "auto" # determines odds of selecting the AR (level 0) when training, "auto" for default behavior
frozen_params: list[str] = field(default_factory=lambda: []) # frozen parameters that are not updated when training
attention: str = "auto"
audio_embedding_sums: bool = True
dropout: float = 0.1 # adjustable dropout value
def get(self, name=None):
return [ self ] if not name or self.name == name else []
@property
def max_levels(self):
return self._max_levels if self._max_levels > 0 else self.prom_levels
@property
# required for fp8 as the lengths needs to be divisible by 8
def input_alignment(self):
return 8 if cfg.optimizations.fp8 else 0
@property
def full_name(self):
name = [ self.name ]
if isinstance(self.size, dict):
if hasattr(self.size, "label") and self.size['label']:
name.append(f"{self.size['label']}")
elif isinstance(self.size, str) and self.size != "full":
name.append(self.size)
if self.arch_type != "transformer":
if self.experts > 1:
name.append(f'{self.experts}x'+self.arch_type.replace("/", "-"))
else:
name.append(self.arch_type.replace("/", "-"))
if cfg.optimizations.bitnet:
name.append("bitnet")
if self.interleave:
name.append("interleaved")
else:
name.append(f'{cfg.model.prom_levels}')
return "-".join(name)
@property
def tokens(self):
if isinstance(self.size, dict) and hasattr(self.size, "tokens"):
return self.size['tokens']
return 1024
@property
def dim(self):
if isinstance(self.size, dict) and hasattr(self.size, "dim"):
return self.size['dim']
if isinstance(self.size, float):
return math.floor(1024 * self.size)
if self.size == "quarter":
return 256
if self.size == "half":
return 512
return 1024
@property
def heads(self):
if isinstance(self.size, dict) and hasattr(self.size, "heads"):
return self.size['heads']
if isinstance(self.size, float):
return math.floor(16 * self.size)
if self.size == "quarter":
return 4
if self.size == "half":
return 8
return 16
@property
def layers(self):
if isinstance(self.size, dict) and hasattr(self.size, "layers"):
return self.size['layers']
if self.size == "double":
return 24
return 12
@property
def activation_checkpointing(self):
return cfg.trainer.activation_checkpointing
@dataclass()
class Hyperparameters:
batch_size: int = 8
gradient_accumulation_steps: int = 32
gradient_clipping: int | float = 100
optimizer: str = "Adamw"
optimizer_params: dict = field(default_factory=lambda: {}) # to pass through deepspeed config
learning_rate: float = 3.25e-4
warmup_steps: int = 0
scheduler: str = ""
scheduler_type: str = "" # deprecated
scheduler_params: dict = field(default_factory=lambda: {}) # to pass through deepspeed config
autotune: bool = False
autotune_params: dict = field(default_factory=lambda: {}) # to pass through deepspeed config
torch_optimizer: bool = False
torch_scheduler: bool = False
@dataclass()
class Evaluation:
batch_size: int = 64
frequency: int = 250
size: int = 64
steps: int = 500
ar_temperature: float = 1.0
nar_temperature: float = 0.2
load_disabled_engines: bool = True
@dataclass()
class DeepSpeed:
zero_optimization_level: int = 0
use_compression_training: bool = False
compression_bits: int = 8
inferencing: bool = False
amp: bool = False
fp16: bool = False
config: dict = field(default_factory=lambda: {}) # to pass through deepspeed config
@cached_property
def ds_cfg(self):
optimizer_params = cfg.hyperparameters.optimizer_params
if 'lr' not in optimizer_params:
optimizer_params["lr"] = cfg.hyperparameters.learning_rate,
scheduler_params = cfg.hyperparameters.scheduler_params
if 'warmup_num_steps' not in scheduler_params:
scheduler_params['warmup_num_steps'] = cfg.hyperparameters.warmup_steps
if 'total_num_steps' not in scheduler_params:
scheduler_params['total_num_steps'] = cfg.trainer.iterations
autotune_params = cfg.hyperparameters.autotune_params
if "enabled" not in autotune_params:
autotune_params['enabled'] = True
if "results_dir" not in autotune_params:
autotune_params['results_dir'] = str( cfg.relpath / "autotune" / "results" )
if "exps_dir" not in autotune_params:
autotune_params['exps_dir'] = str( cfg.relpath / "autotune" / "exps_" )
# DeepSpeed fp16 is incompatible with its AMP
if cfg.trainer.weight_dtype.lower() == "float16" and self.fp16:
self.amp = False
# disable local AMP
if self.amp:
cfg.trainer.amp = False
ds_cfg = {
"train_micro_batch_size_per_gpu": cfg.hyperparameters.batch_size,
"gradient_accumulation_steps": cfg.hyperparameters.gradient_accumulation_steps,
"optimizer": {
"type": cfg.hyperparameters.optimizer,
"params": optimizer_params,
} if not cfg.hyperparameters.torch_optimizer else None,
"scheduler": {
"type": cfg.hyperparameters.scheduler,
"params": scheduler_params,
} if not cfg.hyperparameters.torch_scheduler else None,
"gradient_clipping": cfg.hyperparameters.gradient_clipping,
"fp16": {
"enabled": cfg.trainer.weight_dtype.lower() == "float16" and self.fp16,
"auto_cast": True, # ???
},
"bf16": {
"enabled": cfg.trainer.weight_dtype.lower() == "bfloat16",
},
"amp": {
"enabled": self.amp,
},
"autotuning": autotune_params if cfg.hyperparameters.autotune else None,
"compression_training": {
"weight_quantization": {
"shared_parameters":{
"enabled": True,
"quantizer_kernel": True,
"schedule_offset": 0,
"quantize_groups": 64,
"quantize_verbose": True,
"quantization_type": "symmetric",
"rounding": "nearest",
"quantize_weight_in_forward": cfg.trainer.weight_dtype.lower() != "float16", # MoQ (quantize in optimization step) weight quantization is only supported for FP16
"fp16_mixed_quantize":{
"enabled": False,
"quantize_change_ratio": 1
}
},
"different_groups": {
"wq1": {
"params": {
"start_bits": self.compression_bits,
"target_bits": self.compression_bits,
"quantization_period": 0
},
"modules": [ "self_attn", "mlp" ] # for LLaMA, need to find for other arches
}
}
},
"activation_quantization": {
"shared_parameters":{
"enabled": True,
"quantizer_kernel": True,
"schedule_offset": 0,
"quantize_groups": 64,
"quantize_verbose": True,
"quantization_type": "symmetric",
"rounding": "nearest",
"quantize_weight_in_forward": cfg.trainer.weight_dtype.lower() != "float16", # MoQ (quantize in optimization step) weight quantization is only supported for FP16
"fp16_mixed_quantize":{
"enabled": False,
"quantize_change_ratio": 1
}
},
"different_groups": {
"aq1": {
"params": {
"bits": self.compression_bits,
},
"modules": [ "self_attn", "mlp" ] # for LLaMA, need to find for other arches
}
}
},
} if self.use_compression_training else None,
"zero_optimization": {
"stage": self.zero_optimization_level,
"contiguous_gradients": True,
"overlap_comm": True,
"reduce_scatter": True,
"reduce_bucket_size": 5e8,
"allgather_bucket_size": 5e8,
"sub_group_size": 5e8,
"round_robin_gradients": True,
"offload_optimizer": {
"device": "cpu",
"pin_memory": True
},
"offload_param": {
"device": "cpu",
"pin_memory": True
},
"zero_quantized_weights": self.use_compression_training,
"zero_hpz_partition_size": world_size(),
"zero_quantized_gradients": self.use_compression_training,
} if self.zero_optimization_level > 0 else None,
"comms_logger": {
"enabled": False
}
}
null_keys = [ k for k in ds_cfg if not ds_cfg[k] ]
for k in null_keys:
del ds_cfg[k]
if os.path.exists("./data/ds_config.json"):
ds_cfg.update(json.load(open("./data/ds_config.json", "r", encoding="utf-8")))
else:
ds_cfg.update(self.config)
return ds_cfg
@dataclass()
class Trainer:
iterations: int = 100_000
save_tag: str = "step"
load_tag: str | None = None
save_on_oom: bool = True
save_on_quit: bool = True
export_on_save: bool = False
export_on_quit: bool = False
save_frequency: int = 100
keep_last_checkpoints: int = 0
load_state_dict: bool = False
load_states: bool = True
strict_loading: bool = True
load_module_only: bool = False
restart_step_count: bool = False
activation_checkpointing: bool = True
aggressive_optimizations: bool = False
check_for_oom: bool = True
gc_mode: str | None = None
load_disabled_engines: bool = False
weight_dtype: str = "float16"
amp: bool = False
ddp: bool = False
load_webui: bool = False
no_logger: bool = False
backend: str = "local"
deepspeed: DeepSpeed = field(default_factory=lambda: DeepSpeed)
@cached_property
def dtype(self):
if self.weight_dtype == "float16":
return torch.float16
if self.weight_dtype == "bfloat16":
return torch.bfloat16
if self.weight_dtype == "float8_e5m2":
return torch.float8_e5m2
if self.weight_dtype == "float8_e4m3fn":
return torch.float8_e4m3fn
return torch.float32
@dataclass()
class Inference:
backend: str = "local"
weight_dtype: str = "float32"
amp: bool = False
normalize: bool = False # do NOT enable this unless you know exactly what you're doing
audio_backend: str = "dac"
# legacy / backwards compat
use_vocos: bool = True
use_encodec: bool = True
use_dac: bool = True
# shit that doesn't work
recurrent_chunk_size: int = 0
recurrent_forward: bool = False
@cached_property
def dtype(self):
if self.weight_dtype == "float16":
return torch.float16
if self.weight_dtype == "bfloat16":
return torch.bfloat16
if self.weight_dtype == "int8":
return torch.int8
if self.weight_dtype == "float8_e5m2":
return torch.float8_e5m2
if self.weight_dtype == "float8_e4m3fn":
return torch.float8_e4m3fn
return torch.float32
# should be renamed to optimizations
@dataclass()
class Optimizations:
injects: bool = False # overwrites default torch classes (not recommended)
replace: bool = False # replaces modules in place with the optimized version (recommended)
linear: bool = True # inject/replace linear for BnB
embedding: bool = True # inject/replace embedding for BnB
optimizers: bool = True # inject/replace optimizers (BnB, DAdaptation)
bitsandbytes: bool = False # use bitsandbytes
dadaptation: bool = True # use dadaptation optimizer
bitnet: bool = False # use bitnet
fp8: bool = False # use fp8
@dataclass()
class Config(_Config):
device: str = "cuda"
mode: str = "training" # "inferencing"
experimental: bool = False # So I can stop commenting out things when committing
dataset: Dataset = field(default_factory=lambda: Dataset)
model: Model = field(default_factory=lambda: Model)
models: dict | list | None = None # deprecated
hyperparameters: Hyperparameters = field(default_factory=lambda: Hyperparameters)
evaluation: Evaluation = field(default_factory=lambda: Evaluation)
trainer: Trainer = field(default_factory=lambda: Trainer)
inference: Inference = field(default_factory=lambda: Inference)
bitsandbytes: dict | list | None = None # deprecated
optimizations: Optimizations = field(default_factory=lambda: Optimizations)
tokenizer: str = "./tokenizer.json"
sample_rate: int = 24_000
variable_sample_rate: bool = False # NOT recommended, as running directly 24Khz audio in the 44Khz DAC model will have detrimental quality loss
@property
def distributed(self):
return world_size() > 1
@cached_property
def get_spkr(self):
return eval(self.dataset.speaker_name_getter)
@cached_property
def get_spkr_group(self):
return eval(self.dataset.speaker_group_getter)
@cached_property
def diskcache(self):
if self.cfg_path is not None and self.dataset.cache:
return diskcache.Cache(self.cache_dir).memoize
return lambda: lambda x: x
def load_yaml( self, config_path ):
tmp = Config.from_yaml( config_path )
self.__dict__.update(tmp.__dict__)
def load_hdf5( self, write=False ):
if hasattr(self, 'hdf5'):
self.hdf5.close()
if self.distributed:
self.dataset.hdf5_flag = "r"
try:
self.hdf5 = h5py.File(f'{self.cfg_path}/{self.dataset.hdf5_name}', 'a' if write else self.dataset.hdf5_flag) # to-do, have an easy to set flag that determines if training or creating the dataset
except Exception as e:
print("Error while opening HDF5 file:", f'{self.cfg_path}/{self.dataset.hdf5_name}', str(e))
self.dataset.use_hdf5 = False
def format( self ):
self.dataset = Dataset(**self.dataset)
self.dataset.training = [ Path(dir) for dir in self.dataset.training ]
self.dataset.validation = [ Path(dir) for dir in self.dataset.validation ]
self.dataset.noise = [ Path(dir) for dir in self.dataset.noise ]
if self.models is not None:
self.model = Model(**next(iter(self.models)))
else:
self.model = Model(**self.model)
self.hyperparameters = Hyperparameters(**self.hyperparameters)
self.evaluation = Evaluation(**self.evaluation)
self.trainer = Trainer(**self.trainer)
if not isinstance(self.trainer.deepspeed, type):
self.trainer.deepspeed = DeepSpeed(**self.trainer.deepspeed)
self.inference = Inference(**self.inference)
if self.bitsandbytes is not None:
self.optimizations = Optimizations(**self.bitsandbytes)
else:
self.optimizations = Optimizations(**self.optimizations)
if self.hyperparameters.scheduler_type and not self.hyperparameters.scheduler:
self.hyperparameters.scheduler = self.hyperparameters.scheduler_type
self.hyperparameters.scheduler_type = ""
# do not combine the two
if self.hyperparameters.scheduler == "schedulefree" and self.optimizations.dadaptation:
self.hyperparameters.scheduler = ""
if self.hyperparameters.scheduler == "":
self.hyperparameters.torch_scheduler = True
if self.dataset.prompt_duration != 0:
self.dataset.prompt_duration_range = [self.dataset.prompt_duration, self.dataset.prompt_duration]
if self.trainer.backend == "local" and self.distributed:
self.trainer.ddp = True
# Preserves the old behavior
class NaiveTokenizer:
def get_vocab( self ):
"""
if cfg.dataset.use_hdf5 and 'symmap' in cfg.hdf5:
return json.loads( cfg.hdf5['symmap'].asstr()[()] )
"""
return {'': 1, '': 2, ' ': 3, '.': 4, ',': 5, '!': 6, '?': 7, 'p': 7, 'iː': 8, 'ɚ': 9, 'ˌ': 10, 'dˌ': 11, 'mˌ': 12, 'd': 13, 'ɹ': 14, 'tˈ': 15, 'pˌ': 16, 'uː': 17, 'l': 18, 'æ': 19, 'ɛ': 20, 'ɪ': 21, 'j': 22, 'ʊ': 23, 't': 24, 'n': 25, 'v': 26, 'a': 27, 'o': 28, 'ŋ': 29, 'w': 30, 'ʌ': 31, 'hˈ': 32, 'ɡˈ': 33, 'ə': 34, 'θˈ': 35, 'dˈ': 36, 'wˌ': 37, 'h': 38, 'z': 39, 'k': 40, 'ð': 41, 'ɡˌ': 42, 'ˈ': 43, 'fˈ': 44, 'i': 45, 's': 46, 'ʃ': 47, 'wˈ': 48, 'ðˈ': 49, 'ɹˈ': 50, 'lˈ': 51, 'ɡ': 52, 'oː': 53, 'mˈ': 54, 'e': 55, 'ɑː': 56, 'nˈ': 57, 'm': 58, 'θˌ': 59, 'sˈ': 60, 'f': 61, 'ɔː': 62, 'hˌ': 63, 'b': 64, 'jˈ': 65, 'ɐ': 66, 'ʒˈ': 67, 'θ': 68, 'bˈ': 69, 'ɾ': 70, 'ɜː': 71, 'ʌˈ': 72, 'ʃˌ': 73, 'bˌ': 74, 'kˈ': 75, 'ɔ': 76, 'zˈ': 77, 'ᵻ': 78, 'kˌ': 79, 'vˈ': 80, 'fˌ': 81, 'ʒ': 82, 'ʃˈ': 83, 'ɹˌ': 84, 'tˌ': 85, 'pˈ': 86, 'ðˌ': 87, 'sˌ': 88, 'nˌ': 89, 'lˌ': 90, '̩': 91, 'ʔ': 92, 'vˌ': 93, 'ɪˈ': 94, '"': 95, 'ɪˌ': 96, 'ʒˌ': 97, 'uːˌ': 98, 'ʊˈ': 99, 'jˌ': 100, 'uːˈ': 101, 'iːˈ': 102, 'zˌ': 103, '.ˈ': 104, '…': 105, 'ŋˌ': 106, 'ɐˌ': 107, '—ˈ': 108, 'iˌ': 109, 'iːˌ': 110, 'ɛː': 111, ')': 112, ')ˈ': 113, '(': 114, 'u': 115, '-': 116, 'ɖˈ': 117, 'iˈ': 118, 'ʰˈ': 119, 'ɟˈ': 120, '̃': 121, 'eː': 122, 'ɾˈ': 123, 'r': 124, 'ʰ': 125, '-ˌ': 126, 'ɫ': 127, 'q': 128, '—': 129, 'ʊˌ': 130, 'aː': 131, 'cˈ': 132, '…ˈ': 133, 'c': 134, 'ɳ': 135, 'ɐˈ': 136, 'x': 137, 'ʔˌ': 138, '.ˌ': 139, 'ɑ': 140, '?ˈ': 141, '̩ˈ': 142, '"ˈ': 143, ',ˈ': 144, 'ŋˈ': 145, 'əˌ': 146, '!ˈ': 147, '"ˌ': 148, '?ˌ': 149, ',ˌ': 150, '—ˌ': 151, '̩ˌ': 152, 'əˈ': 153, '!ˌ': 154, 'ɬ': 155, 'ʲ': 156, '¡': 157, 'ɯ': 158, 'qˌ': 159, 'ʑ': 160, 'ʑˈ': 161, '¿': 162, 'ɑːˈ': 163, 'iːː': 164, 'ɛˈ': 165, '¡ˈ': 166, 'æˈ': 167, 'ç': 168, 'ɾˌ': 169, 'ᵻˈ': 170, 'xˈ': 171, 'ɔːˈ': 172, ';': 173, 'ɬˌ': 174, ':': 175, 'ʔˈ': 176, 'ɑːˌ': 177, 'ɬˈ': 178, '”': 179, '“': 180, '“ˈ': 181, '“ˌ': 182, ';ˈ': 183, ';ˌ': 184, ':ˈ': 185, '1': 186, 'rˈ': 187, 'qˈ': 188, 'ᵻˌ': 189, 'ä': 190, '̞ˌ': 191, '̞': 192, 'ũˌ': 193, 'ʑˌ': 194, 'ᵝ': 195, 'ɽ': 196, 'ʲˌ': 197, 'ᵝˌ': 198, 'ũ': 199, 'ũˈ': 200, 'äˌ': 201, 'ɕ': 202, 'ɕˌ': 203, 'ɽˌ': 204, 'çˌ': 205, '…ˌ': 206, '̞ˈ': 207, 'äˈ': 208, 'ɽˈ': 209, 'ɸˌ': 210, 'ɴ': 211, 'ɸˈ': 212, 'ɕˈ': 213, 'ɸ': 214, 'ᵝˈ': 215, 'ʲˈ': 216, 'ĩ': 217, 'çˈ': 218, 'ĩˌ': 219, 'oˌ': 220, 'eˈ': 221, 'ʍ': 222, 'eˌ': 223, 'uˌ': 224, 'ʍˌ': 225, 'uˈ': 226, 'oˈ': 227, 'aˈ': 228}
def encode( self, s ):
symmap = self.get_vocab()
phones = " ".join( list(s) )
# do merge
for merge in [ "\u02C8", "\u02CC", "\u02D0" ]:
phones = phones.replace( f' {merge}', merge )
phones = phones.split(" ")
# cleanup
phones = [ p for i, p in enumerate(phones) if p not in [" "] or ( p in [" "] and p != phones[i-1] ) ]
# add bos / eos
phones = [""] + [ " " if not p else p for p in phones ] + [""]
# tokenize
return [*map(symmap.get, phones)]
cfg = Config.from_cli()
# OmegaConf might not coerce the dicts into the @dataclass decorated classes, so we (try to) coerce them ourselves
try:
cfg.format()
if cfg.dataset.use_hdf5:
cfg.load_hdf5()
except Exception as e:
print("Error while parsing config YAML:", e)
pass
try:
from transformers import PreTrainedTokenizerFast
cfg.tokenizer = (cfg.relpath if cfg.cfg_path is not None else Path("./data/")) / cfg.tokenizer
cfg.tokenizer = PreTrainedTokenizerFast(tokenizer_file=str(cfg.tokenizer))
except Exception as e:
cfg.tokenizer = NaiveTokenizer()
print("Error while parsing tokenizer:", e)
pass
if __name__ == "__main__":
print(cfg)