from .base import Base, list_to_tensor, Categorical from ..config import cfg import torch from torch.nn.utils.rnn import pad_sequence import random import math from einops import rearrange from torch import Tensor from tqdm import trange from ..emb.qnt import trim class AR_NAR(Base): @property def causal(self): return True @property def norm_type(self): return "ln" # if self.n_resp_levels == 1 else "adaln" @property def arch_type(self) -> str: if hasattr(self, "config") and self.config: return self.config.arch_type return cfg.models.ar_nar.arch_type @property def n_prom_levels(self) -> int: return cfg.models.prom_levels @property def n_resp_levels(self) -> int: if hasattr(self, "config") and self.config: return self.config.resp_levels return cfg.models.ar_nar.resp_levels @property def n_max_levels(self) -> int: return cfg.models.max_levels @property def n_tasks(self) -> int: return cfg.models.ar_nar.tasks @property def n_langs(self) -> int: return cfg.models.ar_nar.langs @property def recurrent_chunk_size(self) -> int: return 0 """ @property def rotary_embedding_base(self) -> float: if hasattr(self, "config") and self.config: return self.config.rotary_embedding_base return cfg.models.ar_nar.rotary_embedding_base """ @property def interleave(self) -> bool: return False @property def monolithic(self) -> bool: return True @property def version(self) -> int: if hasattr(self, "config") and self.config: return self.config.version return cfg.models.ar_nar.version def _prune(self, l: Tensor): indices = (l == self.stop_token).nonzero() if len(indices) == 0: return l return l[: indices.min().item()] @staticmethod def _unsqueeze_list(x_list, axis=-1): return [x.unsqueeze(dim=axis) for x in x_list] def forward( self, text_list: list[Tensor], proms_list: list[Tensor], resps_list: list[Tensor] | None = None, lang_list: list[Tensor] | None = None, max_steps: int = 1000, max_levels: int = 7, max_resp_context: int = -1, sampling_temperature: float = 1.0, sampling_min_temperature: float = -1.0, sampling_top_k: int = -100, sampling_top_p: float = 1.0, sampling_repetition_penalty: float = 1.0, sampling_repetition_penalty_decay: float = 0.0, sampling_length_penalty: float = 0.0, sampling_beam_width: int = 0, sampling_mirostat_tau: float = 0.0, sampling_mirostat_eta: float = 0.1, ): device = text_list[0].device batch_size = len(text_list) # is training or NAR if resps_list is not None: n_levels_set = {r.shape[-1] for r in resps_list} n_levels = next(iter(n_levels_set)) # is training if n_levels == self.n_resp_levels: # might be better to have this decided on the dataloader level if cfg.models.ar_nar.p_ar_level == "auto" or cfg.models.ar_nar.p_ar_level is None: quant_levels = torch.randint(0, self.n_resp_levels, (batch_size,)) # randomly select a target RVQ-bin level (0 being AR, 1+ being NAR) else: quant_levels = torch.Tensor([ [ 0 if random.random() < cfg.models.ar_nar.p_ar_level else random.randint(1, self.n_resp_levels) ] for _ in range(batch_size) ]) targ_list = [r[..., l] for r, l in zip(resps_list, quant_levels)] # ensures we only have 1 RVQ-bin (our target) resps_list = [r if l == 0 else r[..., :l] for r, l in zip(resps_list, quant_levels)] # r[..., 0] is technically correct, but only r[:, 0] gets passed through the embedding if cfg.experimental: proms_list = [ r if l == 0 else trim(r, 75 * 3) for r, l in zip(proms_list, quant_levels) ] # trim input prompt to 3 seconds # append stop tokens for AR for i in range(batch_size): if quant_levels[i] > 0: continue resps_list[i] = torch.cat([resps_list[i], torch.Tensor([[self.stop_token] * n_levels]).to(device=device, dtype=torch.int16) ]) targ_list[i] = torch.cat([targ_list[i], torch.Tensor([self.stop_token]).to(device=device, dtype=torch.int16) ]) return super().forward( text_list=text_list, proms_list=proms_list, resps_list=resps_list, targ_list=targ_list, lang_list=lang_list, quant_levels=quant_levels, ) # is NAR if max_levels == 0: max_levels = self.n_resp_levels prev_list = resps_list for n in trange( max_levels, desc="NAR" ): level = prev_list[0].shape[-1] if level >= max_levels + 1: # min(max_levels + 1, self.n_resp_levels): # commented out to experiment with exceeding trained levels break quant_levels = torch.full((len(text_list),), level) logits = super().forward( text_list=text_list, proms_list=proms_list, resps_list=prev_list, lang_list=lang_list, quant_levels=quant_levels, ) resps_list = super().sample( logits=logits, resps_list=prev_list, quant_levels=quant_levels, temperature=sampling_temperature, min_temperature=sampling_min_temperature, top_p=sampling_top_p, top_k=sampling_top_k, repetition_penalty=sampling_repetition_penalty, repetition_penalty_decay=sampling_repetition_penalty_decay, #length_penalty=sampling_length_penalty, #beam_width=sampling_beam_width, #mirostat=mirostat, ) prev_list = [ torch.cat([rs, r.unsqueeze(-1).to(device)], dim=-1) for rs, r in zip(prev_list, resps_list) ] return prev_list # is AR sequence_list = [ torch.zeros(0, device=device).to(torch.int16) for _ in text_list ] stopped = torch.zeros(batch_size, device=device).bool() recurrent_state = {} if cfg.inference.recurrent_forward else None mirostat = [ {"n": 1024, "tau": sampling_mirostat_tau, "eta": sampling_mirostat_eta, "max_surprise": sampling_mirostat_eta * 2, "error_surprise": 0, "running_total_surprise": 0} ] * batch_size if sampling_mirostat_tau > 0.0 else None scores = [ 1.0 ] * sampling_beam_width if self.interleave: max_steps *= self.n_prom_levels # get next in sequence for n in trange(max_steps // max(1, self.recurrent_chunk_size), desc="AR"): # experimental rolling response to avoid too-long perplexity hits despite RetNet allegedly fixing this. # UNTESTED. In theory it would be better to also adjust the text, but there's no way of correlating text to segment of audio without something like wav2vec2 if max_resp_context > 0: resps_list = self._unsqueeze_list([ sequence[-max_resp_context:] for sequence in sequence_list ] ) else: resps_list = self._unsqueeze_list(sequence_list) logits = super().forward( text_list=text_list, proms_list=proms_list, resps_list=resps_list, lang_list=lang_list, state=recurrent_state ) r = super().sample( logits=logits, resps_list=resps_list, temperature=sampling_temperature, min_temperature=sampling_min_temperature, top_p=sampling_top_p, top_k=sampling_top_k, repetition_penalty=sampling_repetition_penalty, repetition_penalty_decay=sampling_repetition_penalty_decay, length_penalty=sampling_length_penalty, beam_width=sampling_beam_width, mirostat=mirostat, ) if mirostat is not None: # r is the state mirostat = r # extract token from state r = [ state["token"] for state in mirostat ] # we do it here because the sampler will already expand our logits list elif sampling_beam_width > 0: # expand tuple r, s = r # first step, expand batch if batch_size == 1: batch_size = sampling_beam_width text_list = text_list * sampling_beam_width proms_list = proms_list * sampling_beam_width sequence_list = sequence_list * sampling_beam_width stopped = torch.zeros(batch_size, device=device).bool() scores = [ scores[i] + score for i, score in enumerate(s) ] # append tokens for i, ri in enumerate(r): if self.stop_token in ri: stopped[i] = True sequence_list[i] = torch.cat([sequence_list[i], ri.to(device)]) # stop token found stopped |= r == self.stop_token if stopped.all().item(): break # pick the best scoring candidate # desu this is always going to be candidate 0 if sampling_beam_width: sequence_list = [ sequence_list[0] ] return [self._prune(r) for r in sequence_list] def example_usage(): cfg.trainer.backend = "local" from functools import partial from einops import repeat from ..emb.qnt import decode_to_file, unload_model from ..engines import Engine from tqdm import tqdm from ..utils import wrapper as ml device = "cuda" x8 = partial(repeat, pattern="t -> t l", l=cfg.models.prom_levels) symmap = {'': 1, '': 2, ' ': 3, '.': 4, ',': 5, '!': 6, '?': 7, 'p': 7, 'iː': 8, 'ɚ': 9, 'ˌ': 10, 'dˌ': 11, 'mˌ': 12, 'd': 13, 'ɹ': 14, 'tˈ': 15, 'pˌ': 16, 'uː': 17, 'l': 18, 'æ': 19, 'ɛ': 20, 'ɪ': 21, 'j': 22, 'ʊ': 23, 't': 24, 'n': 25, 'v': 26, 'a': 27, 'o': 28, 'ŋ': 29, 'w': 30, 'ʌ': 31, 'hˈ': 32, 'ɡˈ': 33, 'ə': 34, 'θˈ': 35, 'dˈ': 36, 'wˌ': 37, 'h': 38, 'z': 39, 'k': 40, 'ð': 41, 'ɡˌ': 42, 'ˈ': 43, 'fˈ': 44, 'i': 45, 's': 46, 'ʃ': 47, 'wˈ': 48, 'ðˈ': 49, 'ɹˈ': 50, 'lˈ': 51, 'ɡ': 52, 'oː': 53, 'mˈ': 54, 'e': 55, 'ɑː': 56, 'nˈ': 57, 'm': 58, 'θˌ': 59, 'sˈ': 60, 'f': 61, 'ɔː': 62, 'hˌ': 63, 'b': 64, 'jˈ': 65, 'ɐ': 66, 'ʒˈ': 67, 'θ': 68, 'bˈ': 69, 'ɾ': 70, 'ɜː': 71, 'ʌˈ': 72, 'ʃˌ': 73, 'bˌ': 74, 'kˈ': 75, 'ɔ': 76, 'zˈ': 77, 'ᵻ': 78, 'kˌ': 79, 'vˈ': 80, 'fˌ': 81, 'ʒ': 82, 'ʃˈ': 83, 'ɹˌ': 84, 'tˌ': 85, 'pˈ': 86, 'ðˌ': 87, 'sˌ': 88, 'nˌ': 89, 'lˌ': 90, '̩': 91, 'ʔ': 92, 'vˌ': 93, 'ɪˈ': 94, '"': 95, 'ɪˌ': 96, 'ʒˌ': 97, 'uːˌ': 98, 'ʊˈ': 99, 'jˌ': 100, 'uːˈ': 101, 'iːˈ': 102, 'zˌ': 103, '.ˈ': 104, '…': 105, 'ŋˌ': 106, 'ɐˌ': 107, '—ˈ': 108, 'iˌ': 109, 'iːˌ': 110, 'ɛː': 111, ')': 112, ')ˈ': 113, '(': 114, 'u': 115, '-': 116, 'ɖˈ': 117, 'iˈ': 118, 'ʰˈ': 119, 'ɟˈ': 120, '̃': 121, 'eː': 122, 'ɾˈ': 123, 'r': 124, 'ʰ': 125, '-ˌ': 126, 'ɫ': 127, 'q': 128, '—': 129, 'ʊˌ': 130, 'aː': 131, 'cˈ': 132, '…ˈ': 133, 'c': 134, 'ɳ': 135, 'ɐˈ': 136, 'x': 137, 'ʔˌ': 138, '.ˌ': 139, 'ɑ': 140, '?ˈ': 141, '̩ˈ': 142, '"ˈ': 143, ',ˈ': 144, 'ŋˈ': 145, 'əˌ': 146, '!ˈ': 147, '"ˌ': 148, '?ˌ': 149, ',ˌ': 150, '—ˌ': 151, '̩ˌ': 152, 'əˈ': 153, '!ˌ': 154, 'ɬ': 155, 'ʲ': 156, '¡': 157, 'ɯ': 158, 'qˌ': 159, 'ʑ': 160, 'ʑˈ': 161, '¿': 162, 'ɑːˈ': 163, 'iːː': 164, 'ɛˈ': 165, '¡ˈ': 166, 'æˈ': 167, 'ç': 168, 'ɾˌ': 169, 'ᵻˈ': 170, 'xˈ': 171, 'ɔːˈ': 172, ';': 173, 'ɬˌ': 174, ':': 175, 'ʔˈ': 176, 'ɑːˌ': 177, 'ɬˈ': 178} def tokenize(content, lang_marker="en"): split = content.split(" ") phones = [f""] + [ " " if not p else p for p in split ] + [f""] return torch.tensor([*map(symmap.get, phones)]).to() qnt = torch.load("data/qnt.pt")[0].t()[:, :cfg.models.prom_levels].to(device) cfg.hyperparameters.gradient_accumulation_steps = 1 text_list = [ tokenize("ˈ a ɪ w ɪ l nˌ ɑː t ˈ æ s k ɐ sˈ ɛ k ə n d tˈ a ɪ m").to(device), ] proms_list = [ qnt[:75*3, :].to(device), ] resps_list = [ qnt.to(device), ] text_list = text_list[:1] proms_list = proms_list[:1] resps_list = resps_list[:1] kwargs = { 'n_tokens': 1024, 'd_model': 1024, # 1536 'n_heads': 16, # 24 'n_layers': 12, # 32 } """ try: kwargs['config'] = cfg.models.ar_nar except Exception as e: pass """ model = AR_NAR(**kwargs).to(device) steps = 250 optimizer = ml.Prodigy(model.parameters(), lr=1.0) #optimizer = ml.AdamW(model.parameters(), lr=1.0e-4) engine = Engine(model=model, optimizer=optimizer) torch.save( { 'module': model.state_dict() }, "./data/test.pth" ) print(f"AR+NAR parameter count: {sum(p.numel() for p in model.parameters() if p.requires_grad)}") @torch.inference_mode() def sample( name, steps=600 ): engine.eval() resps_list = engine(text_list, proms_list, max_steps=steps, sampling_temperature=0.95 ) for i, o in enumerate(resps_list): _ = decode_to_file(o, f"data/ar.{i}.{name}.wav", device=device) resps_list = [r.unsqueeze(-1) for r in resps_list] resps_list = engine( text_list, proms_list, resps_list=resps_list, sampling_temperature=0.2 ) for i, o in enumerate(resps_list): _ = decode_to_file(o, f"data/ar+nar.{i}.{name}.wav", device=device) unload_model() def train(): engine.train() t = trange(steps) for i in t: stats = {"step": i} stats |= engine.traverse(text_list=text_list, proms_list=proms_list, resps_list=resps_list) tqdm.write(f"{stats}") sample("init", 5) train() sample("final") if __name__ == "__main__": example_usage()