import copy #import diskcache import h5py import json import os import subprocess import sys import time import argparse import yaml import random import logging import itertools import torch import numpy as np from dataclasses import asdict, dataclass, field from functools import cached_property from pathlib import Path from .utils.distributed import world_size from .utils.io import torch_load from .utils import set_seed, prune_missing, md5_hash, coerce_dtype @dataclass() class BaseConfig: yaml_path: str | None = None # path passed in through --yaml @property def cfg_path(self): if self.yaml_path: return Path(self.yaml_path.parent) return Path(__file__).parent.parent / "data" @property def rel_path(self): return Path(self.cfg_path) @property def cache_dir(self): return self.rel_path / ".cache" @property def data_dir(self): return self.rel_path / "data" @property def metadata_dir(self): return self.rel_path / "metadata" @property def ckpt_dir(self): return self.rel_path / "ckpt" @property def log_dir(self): return self.rel_path / "logs" / str(self.start_time) @cached_property def start_time(self): return int(time.time()) @cached_property def git_commit(self): try: cmd = "git rev-parse HEAD" return subprocess.check_output(cmd.split()).decode("utf8").strip() except: return "" @cached_property def git_status(self): try: cmd = "git status" return subprocess.check_output(cmd.split()).decode("utf8").strip() except: return "" def dumps(self): data = {k: getattr(self, k) for k in dir(self) if not k.startswith("__")} data = {k: v for k, v in data.items() if not callable(v)} return json.dumps(data, indent=2, default=str) def dump(self, path=None): if path is None: path = self.log_dir / "cfg.json" path.parent.mkdir(parents=True, exist_ok=True) with open(path, "w") as f: f.write(self.dumps()) # ick @classmethod def prune_missing( cls, yaml ): default = cls(**{}) default.format() yaml, missing = prune_missing( source=default, dest=yaml ) if missing: _logger.warning(f'Missing keys in YAML: {missing}') return yaml @classmethod def from_yaml( cls, yaml_path ): state = {} state = yaml.safe_load(open(yaml_path, "r", encoding="utf-8")) state.setdefault("yaml_path", yaml_path) state = cls.prune_missing( state ) return cls(**state) @classmethod def from_model( cls, model_path, lora_path=None ): if not model_path.exists(): raise Exception(f'Model path does not exist: {model_path}') # load state dict and copy its stored model config model_kwargs = { "attention": "auto", "training": False, "teacher": False } model_state_dict = [ torch_load( model_path )["config"] | { "path": model_path } | model_kwargs ] if model_path and model_path.exists() else [] lora_state_dict = [ torch_load( lora_path )["config"] | { "path": lora_path } ] if lora_path and lora_path.exists() else [] state = { "models": model_state_dict, "loras": lora_state_dict, "trainer": { "load_state_dict": True } } return cls(**state) @classmethod def from_cli(cls, args=sys.argv): # legacy support for yaml=`` format for i, arg in enumerate(args): if arg.startswith("yaml"): args[i] = f'--{arg}' parser = argparse.ArgumentParser(allow_abbrev=False, add_help=False) parser.add_argument("--yaml", type=Path, default=os.environ.get('VALLE_YAML', None)) # os environ so it can be specified in a HuggingFace Space too parser.add_argument("--model", type=Path, default=os.environ.get('VALLE_MODEL', None)) # os environ so it can be specified in a HuggingFace Space too parser.add_argument("--lora", type=Path, default=os.environ.get('VALLE_LORA', None)) # os environ so it can be specified in a HuggingFace Space too args, unknown = parser.parse_known_args(args=args) if args.model: return cls.from_model( args.model, args.lora ) if args.yaml: return cls.from_yaml( args.yaml ) return cls(**{}) def __repr__(self): return str(self) def __str__(self): return self.dumps() @dataclass() class Dataset: training: list[Path] = field(default_factory=lambda: []) # paths to load into the training dataset validation: list[Path] = field(default_factory=lambda: []) # paths to load into the validation dataset noise: list[Path] = field(default_factory=lambda: []) # paths to load into the noise dataset # to-do: replace these since I feel this can be a bottleneck speaker_name_getter: str = "lambda p: f'{p.parts[-3]}_{p.parts[-2]}'" # function eval'd to extract a speaker's name from an utternace path speaker_group_getter: str = "lambda p: f'{p.parts[-3]}'" # function eval'd to extract a speaker's group from an utternace path # to-do: validate if I can ignore this since this is an artifact from when I only saved phonemes and encoded audio, and no metadata speaker_languages: dict = field(default_factory=lambda: {}) # dict where keys are the language codes and values are the speaker groups use_hdf5: bool = False # whether to load from an HDF5 dataset hdf5_name: str = "data.h5" # file name to load the HDF5 dataset hdf5_flag: str = "a" # flag to load the HDF5 file, automatically adjusted anyways use_metadata: bool = False # use genretaed metadata to aid in dataset loading validate: bool = True # validate each utterance on wheter it can be included based on duration range caps workers: int = 8 # number of dataloader workers to spawn cache: bool = True # use diskcache to cache the dataset min_utterances: int = 2 # minimum number of utterances a speaker can have max_utterances: int = 0 # max number of utterances a speaker can have (0 to disable) duration_range: list[float] = field(default_factory=lambda: [1.0, 12.0]) # the duration range an utterance can be to be included in the dataset sample_type: str = "path" # path | speaker sample_order: str = "interleaved" # duration sample_shuffle: bool = True # shuffles the indices in the sampler sample_max_duration_batch: float = 0.0 # total number of seconds of utterances per batched, 0 to disable # for a full sized model with 12GiB of VRAM for Encodec, 120 seconds is just enough # for a full sized model with 24GiB of VRAM for Encodec, 380 seconds is 80% VRAM consumed (but it might be limited by batch size) prompt_duration_range: list[float] = field(default_factory=lambda: [3.0, 6.0]) # the duration range the input prompts can be prompt_max_samples: int = 3 # maximum number of utterances that can be included in an input prompt for training prompt_continuous_utterance_p: float = 0.0 # probability to use the target utterance as an input prompt rather than using a different utterance prompt_similar_p: float = 0.75 # odds of sampling for a similar prompt instead of a random prompt prompt_similar_top_k: int = 1 # top-k similar candidates to sample from prompt_similar_top_k_offset: int = 0 # offset from the top-k to sample from prompt_inject_noise: bool = False # adds noise to the input prompt waveform to try and vary things resps_max_samples: int = 1 # number of samples to target for training resps_append_p: float = 1.0 # probability to append another sample to the training target resps_pad_silence_p: float = 0.0 # probability to pad resp with silence to fit within the next window tasks_list: list[str] = field(default_factory=lambda: ["tts"]) # list of tasks to train against reencode_on_concat: bool = False # whether to concat audio by decode => concat => encode, or naively concat codes reencode_device: str = "cpu" # "cpu" is slower but saves memory, cuda throws [rank0]: RuntimeError: Cannot re-initialize CUDA in forked subprocess. To use CUDA with multiprocessing, you must use the 'spawn' start method noise_scale: float = 0.25 # scaling noise value retokenize_text: bool = False _frames_per_second: int = 0 # allows setting your own hint def hash_key(self, *args): return md5_hash([ self.use_hdf5, self.min_duration, self.max_duration ] + [*args]) @cached_property def frames_per_second(self): if self._frames_per_second > 0: return self._frames_per_second if cfg.audio_backend == "dac": if cfg.sample_rate == 44_100: return 87 if cfg.sample_rate == 16_000: return 50 # 24Khz Encodec / Vocos and incidentally DAC are all at 75Hz return 75 @property def min_phones(self): return self.phones_range[0] @property def max_phones(self): return self.phones_range[1] @property def min_duration(self): return self.duration_range[0] @property def max_duration(self): return self.duration_range[1] # collection of experimental variables that should not be tampered with unless you know what you're doing @dataclass() class ModelExperimentalSettings: hf: bool = False # strictly utilizes a HF model and handles converting input IDs / outputs accordingly interleave: bool = False # use an interleaved AR rather than a split AR + NAR (worse performance and results due to everything being causal) split_classifiers: bool = False # each RVQ level gets its own classifier / output proj / LM head rather than sharing one for all RVQ levels (to-do: also split for text/prom) audio_embedding_sums: bool = False # whether each pass uses the previous RVQ codes or only the current level # a model trained not summing audio embeddings *can* have this enabled without any apparent issues # a model trained to sum *cannot* have this disabled without any apparent issues, or at least the ar+nar-retnet-8 can't. # in theory a model that is trained to sum embeddings can peform better due to "seeing" previous levles (due to the R in RVQ standing for residuals...), but in practice it seems fine to not do so audio_embedding_mode: str | None = None # None | "exclusive" | "inclusive", subjugates the audio backend's encoding/decoding model for embeddings kv_heads: int = 0 # MHA or GQA (for supported backends) rvq_levels_p: str | list = "auto" # determines odds of selecting RVQ levels when training, "equal" will make each level equally likely rvq_level_range: list = field(default_factory=lambda: []) # some cringe to try and limit the RVQ training range for LoRAs, isn't necesary unified_position_ids: bool = True # False will generate position IDs partitioned for each section tie_classifier_to_embedding: bool = False # Ties the classifier output to their respective embeddings, this does not seem to do anything good in testing # performs token dropout to compensate for errors token_dropout_error: float = 0.0 # probability to nudge a token by ±1 token_dropout_rate: float = 0.0 # probability to randomly set a token to a special dropout value token_dropout_rvq_levels: list = field(default_factory=lambda: [1,8]) # determines which levels to do dropout, by default do not do dropout on RVQ level 0 causal_size: int = 1 # experimental setting to see if I can just do parallel decoding in chunks instead of one-at-a-time without resorting to exotic solutions # VALL-E 2's approach of "combining token embeddings to group them" sounds terribad for a shared AR/NAR model # however, introducing partial parallel decoding for the AR maybe maybe MAYBE might help try and unify the AR/NAR tasks better, MAYBE # it just seems like a bitch to try and train something worthwhile with it, since there's crackles every other token # RetNet's chunked inferencing might be a better place for this masking_train_p: float = 0.0 # odds of training with masking masking_train_rvq_levels: list = field(default_factory=lambda: [0,0]) # determines which levels to do mask training on masking_ratio: str | float = 0.8 # sets a masking ratio, "random" will randomly pick, "rand" will pick between [0.2, 0.8] ignore_inputs_for_loss: bool = True # only calculate the loss on the outputs since thats what matters, as the inputs that do have loss calculated upon affects the loss for the entire sequence noncausal_masks: bool = False # to correct an oversight with Llama always using causal masks...... # classifier-free guidance training settings cfg_cond_dropout_p: float = 0.0 # 0.2 # probability to drop out text and audio during training cfg_text_dropout_p: float = 0.0 # 0.0 # probability to drop out input audio prompt during training cfg_prom_dropout_p: float = 0.0 # 0.3 # probability to drop out input audio prompt during training # failed experiment layerskip: bool = False # layerskip compatible model (or training for) #layerskip_rvq_levels: list = field(default_factory=lambda: []) # RVQ levels to train / inference layerskip for (to-do: implement, see if it matters) layerskip_r: int = 2 # number of layers to factor into early-exit loss calc layerskip_p_max: float = 0.1 # maximum probabilty to dropout the last layer, used for calculating layer dropout probabilities layerskip_e_scale: float = 0.2 # early-exit loss scalar value # I really need to clean this up @dataclass() class Model: name: str = "ar+nar" # vanity name for the model version: int = 5 # 1 = old with MultiEmbedding, 2 = new with AudioEmbedding, 3+ = additional embeddings size: str | dict = "full" # preset string or explicitly defined dimensionality resp_levels: int = 8 # RVQ-bin levels this model supports tasks: int = 8 # ["tts", "ns", "sr", "tse", "cse", "nse"] and leaves two more for anything else I want (like "svc") (unused) langs: int = 1 # defined languages (semi-unused) tones: int = 1 # defined tones (unsued) experts: int = 1 # for mixtral / retnet-ts arch_type: str = "llama" # underling LM architecture used training: bool = False # I really need to attend to this teacher: bool = False # if this is to be treated as a teacher frozen_params: list[str] = field(default_factory=lambda: []) # frozen parameters that are not updated when training attention: str = "auto" # for llama arch_types: attention used dropout: float = 0.1 # adjustable dropout value path: Path | None = None #loss_factors: dict = field(default_factory=lambda: { "text": 0.1, "prom": 1.0, "resp": 1.0 }) # disable it by default since it causes a little more harm than good loss_factors: dict = field(default_factory=lambda: {}) capabilities: list = field(default_factory=lambda: ["ar", "nar"]) # + ["lang", "tone"] if you have your dataset labeled for such kwargs: dict = field(default_factory=lambda: {}) experimental: dict | ModelExperimentalSettings | None = None # experimental settings def get(self, name=None): return [ self ] if not name or self.name == name else [] def loss_factor(self, k): return self.loss_factors.get(k, 0.0) @property def max_levels(self): # return RVQ level range if self.experimental is not None and self.experimental.rvq_level_range: return self.experimental.rvq_level_range[-1] return self.resp_levels @property # required for fp8 as the lengths needs to be divisible by 8 def input_alignment(self): return 8 if cfg.optimizations.fp8 else 0 @property def full_name(self): name = [ self.name ] if isinstance(self.size, dict): if hasattr(self.size, "label") and self.size['label']: name.append(f"{self.size['label']}") elif isinstance(self.size, str) and self.size not in ["full","extended"]: name.append(self.size) if self.experts > 1: name.append(f'{self.experts}x'+self.arch_type.replace("/", "-")) else: name.append(self.arch_type.replace("/", "-")) if cfg.optimizations.bitnet: name.append("bitnet") name.append(f'{self.resp_levels}') return "-".join(name) @property def tokens(self): return self.audio_tokens @property def audio_tokens(self): if isinstance(self.size, dict) and hasattr(self.size, "audio_tokens"): return self.size['audio_tokens'] return 1024 @property def text_tokens(self): if isinstance(self.size, dict) and hasattr(self.size, "text_tokens"): return self.size['text_tokens'] return 256 @property def dim(self): if isinstance(self.size, dict) and hasattr(self.size, "dim"): return self.size['dim'] if isinstance(self.size, float): return math.floor(1024 * self.size) if self.size == "quarter": return 256 if self.size == "half": return 512 return 1024 @property def heads(self): if isinstance(self.size, dict) and hasattr(self.size, "heads"): return self.size['heads'] if isinstance(self.size, float): return math.floor(16 * self.size) if self.size == "quarter": return 4 if self.size == "half": return 8 return 16 @property def layers(self): if isinstance(self.size, dict) and hasattr(self.size, "layers"): return self.size['layers'] if self.size == "double": return 24 if self.size == "extended": return 16 return 12 @property def activation_checkpointing(self): return cfg.trainer.activation_checkpointing @property def gradient_checkpointing(self): return cfg.trainer.gradient_checkpointing @property def lora_policy(self): include = ["model"] # by default only adapt the main model (not embeddings nor classifier/output projection/LM head/whatever) exclude = [] if self.arch_type == "llama": include = ["self_attn", "mlp"] # target only the attention + mlp exclude = ["self_attn.k_proj"] # common literature says to ignore it if self.arch_type == "retnet": include = ["layers."] # target the core layers of the RetNet and ignore the auxiliary stuff exclude = ["retention.k_proj"] # attention-based transformers ignore the K, so might as well ignore it for the retnet return dict(include=include, exclude=exclude) # to-do: derive default arguments from here @property def get_kwargs(self, type): return self.kwargs # should be renamed to Adapters @dataclass() class LoRA: name: str = "lora" # vanity name # to-do: find sane default values rank: int = 128 # rank for the LoRA alpha: int = 128 # rank for the LoRA training: bool = True # embeddings: bool = False # train the embedding too parametrize: bool = False # whether to use the parameterized pathway for LoRAs or not rvq_levels: list[int] = field(default_factory=lambda: []) # determines RVQ levels to activate the LoRA path: Path | None = None @property def full_name(self): name = [ self.name, f"r{self.rank}", f"a{self.alpha}" ] return "-".join(name) # actually not needed anymore def active_level( self, level ): if not self.rvq_levels: return True return level in self.rvq_levels @dataclass() class Hyperparameters: batch_size: int = 8 # number of samples per training batch gradient_accumulation_steps: int = 32 # number of steps to accumulate gradients before updating gradient_clipping: int | float = 1.0 # largest size a gradient norm can be optimizer: str = "Adamw" # optimizer to use, should be 'Prodigyopt" now optimizer_params: dict = field(default_factory=lambda: {}) # to pass through deepspeed config learning_rate: float = 3.25e-4 # should be 1.0 for ProdigyOpt warmup_steps: int = 0 # number of steps to warm up the optimizer before performing updates, I think, this is just passed to deepspeed scheduler: str = "" # scheduler to use, currently don't ever use one so this doesn't really matter scheduler_type: str = "" # deprecated scheduler_params: dict = field(default_factory=lambda: {}) # to pass through deepspeed config autotune: bool = False # to do deepspeed's autotuning autotune_params: dict = field(default_factory=lambda: {}) # to pass through deepspeed config torch_optimizer: bool = False # if the requested optimizer is torch-derived rather than deepspeed supplied torch_scheduler: bool = False # if the requested scheduler is torch-derived rather than deepspeed-supplied teacher_alpha: float = 0.5 # mixing factor when performing knowledge distillation teacher_temperature: float = 1.0 teacher_loss_fn: str = "mse" # kl | mse, use either kl_div or mse_loss (most implementations use kl, some literature says you can use mse) @dataclass() class Evaluation: batch_size: int = 64 # number of samples per batch during eval / val frequency: int = 250 # do eval / val every X iterations size: int = 64 # number of samples to generate during eval / val kwargs: dict = field(default_factory=lambda: {}) # inferencing kwargs # necessary in order to make it not confusing with requiring not-directyl exposed arguments passed to the model @cached_property def ar_kwargs( self ): return dict( max_steps=self.kwargs.get("max_ar_steps", 500), temperature=self.kwargs.get("ar_temperature", 1.0), min_temperature=self.kwargs.get("min_ar_temperature", -1), top_p=self.kwargs.get("top_p", 1.0), top_k=self.kwargs.get("top_k", 0), min_p=self.kwargs.get("min_p", 0.0), repetition_penalty=self.kwargs.get("repetition_penalty", 1.0), repetition_penalty_decay=self.kwargs.get("repetition_penalty_decay", 0), length_penalty=self.kwargs.get("length_penalty", 0), beam_width=self.kwargs.get("beam_width", 0), mirostat_tau=self.kwargs.get("mirostat_tau", 0), mirostat_eta=self.kwargs.get("mirostat_eta", 0), dry_multiplier=self.kwargs.get("dry_multiplier", 0), dry_base=self.kwargs.get("dry_base", 0), dry_allowed_length=self.kwargs.get("dry_allowed_length", 0), entropix=self.kwargs.get("entropix_sampling", False), ) @cached_property def nar_kwargs( self ): return dict( max_levels=self.kwargs.get("max_nar_levels", 0), temperature=self.kwargs.get("nar_temperature", 0.0), min_temperature=self.kwargs.get("min_nar_temp", -1), top_p=self.kwargs.get("top_p", 1.0), top_k=self.kwargs.get("top_k", 0.0), min_p=self.kwargs.get("min_p", 0.0), repetition_penalty=self.kwargs.get("repetition_penalty", 1.0), repetition_penalty_decay=self.kwargs.get("repetition_penalty_decay", 0.0), ) @dataclass() class DeepSpeed: zero_optimization_level: int = 0 # doesn't seem to work use_compression_training: bool = False # cope compression_bits: int = 8 # cope inferencing: bool = False # for using DeepSpeed's inferencing wrapper instead amp: bool = False # use DeepSpeed's AMP (requires some other package installed apparently) loss_scale_window: int = 100 min_loss_scale: float = 8192.0 config: dict = field(default_factory=lambda: {}) # to pass through deepspeed config @cached_property def ds_cfg(self): optimizer_params = cfg.hyperparameters.optimizer_params if 'lr' not in optimizer_params: optimizer_params["lr"] = cfg.hyperparameters.learning_rate, scheduler_params = cfg.hyperparameters.scheduler_params if 'warmup_num_steps' not in scheduler_params: scheduler_params['warmup_num_steps'] = cfg.hyperparameters.warmup_steps if 'total_num_steps' not in scheduler_params: scheduler_params['total_num_steps'] = cfg.trainer.iterations autotune_params = cfg.hyperparameters.autotune_params if "enabled" not in autotune_params: autotune_params['enabled'] = True if "results_dir" not in autotune_params: autotune_params['results_dir'] = str( cfg.rel_path / "autotune" / "results" ) if "exps_dir" not in autotune_params: autotune_params['exps_dir'] = str( cfg.rel_path / "autotune" / "exps_" ) # DeepSpeed fp16 is incompatible with its AMP if cfg.trainer.weight_dtype.lower() == "float16": self.amp = False # disable local AMP if self.amp: cfg.trainer.amp = False ds_cfg = { "train_micro_batch_size_per_gpu": cfg.hyperparameters.batch_size, "gradient_accumulation_steps": cfg.hyperparameters.gradient_accumulation_steps, "optimizer": { "type": cfg.hyperparameters.optimizer, "params": optimizer_params, } if not cfg.hyperparameters.torch_optimizer else None, "scheduler": { "type": cfg.hyperparameters.scheduler, "params": scheduler_params, } if not cfg.hyperparameters.torch_scheduler else None, "gradient_clipping": cfg.hyperparameters.gradient_clipping, "fp16": { "enabled": cfg.trainer.weight_dtype.lower() == "float16", "auto_cast": True, # ??? "loss_scale_window": self.loss_scale_window, # raise every 100 consecutive good steps "min_loss_scale": self.min_loss_scale, # loss scale hitting 8K fries the model, 16K is fine but 32K is comfy "loss_scale": 0.0 if cfg.trainer.scale_loss else 1.0, }, "bf16": { "enabled": cfg.trainer.weight_dtype.lower() == "bfloat16", }, "amp": { "enabled": self.amp, }, "autotuning": autotune_params if cfg.hyperparameters.autotune else None, "compression_training": { "weight_quantization": { "shared_parameters":{ "enabled": True, "quantizer_kernel": True, "schedule_offset": 0, "quantize_groups": 64, "quantize_verbose": True, "quantization_type": "symmetric", "rounding": "nearest", "quantize_weight_in_forward": cfg.trainer.weight_dtype.lower() != "float16", # MoQ (quantize in optimization step) weight quantization is only supported for FP16 "fp16_mixed_quantize":{ "enabled": False, "quantize_change_ratio": 1 } }, "different_groups": { "wq1": { "params": { "start_bits": self.compression_bits, "target_bits": self.compression_bits, "quantization_period": 0 }, "modules": [ "self_attn", "mlp" ] # for LLaMA, need to find for other arches } } }, "activation_quantization": { "shared_parameters":{ "enabled": True, "quantizer_kernel": True, "schedule_offset": 0, "quantize_groups": 64, "quantize_verbose": True, "quantization_type": "symmetric", "rounding": "nearest", "quantize_weight_in_forward": cfg.trainer.weight_dtype.lower() != "float16", # MoQ (quantize in optimization step) weight quantization is only supported for FP16 "fp16_mixed_quantize":{ "enabled": False, "quantize_change_ratio": 1 } }, "different_groups": { "aq1": { "params": { "bits": self.compression_bits, }, "modules": [ "self_attn", "mlp" ] # for LLaMA, need to find for other arches } } }, } if self.use_compression_training else None, "zero_optimization": { "stage": self.zero_optimization_level, "contiguous_gradients": True, "overlap_comm": True, "reduce_scatter": True, "reduce_bucket_size": 5e8, "allgather_bucket_size": 5e8, "sub_group_size": 5e8, "round_robin_gradients": True, "offload_optimizer": { "device": "cpu", "pin_memory": True }, "offload_param": { "device": "cpu", "pin_memory": True }, "zero_quantized_weights": self.use_compression_training, "zero_hpz_partition_size": world_size(), "zero_quantized_gradients": self.use_compression_training, } if self.zero_optimization_level > 0 else None, "comms_logger": { "enabled": False } } null_keys = [ k for k in ds_cfg if not ds_cfg[k] ] for k in null_keys: del ds_cfg[k] if os.path.exists("./data/ds_config.json"): ds_cfg.update(json.loads(open("./data/ds_config.json", "r", encoding="utf-8")).read()) else: ds_cfg.update(self.config) return ds_cfg @dataclass() class Trainer: iterations: int = 1_000_000 # maximum iterations to train save_tag: str = "step" # name to save checkpoints under, "step" will save as current step count load_tag: str | None = None # tag to load checkpoint from; if None: will check against contents of `./ckpt/{model-name}/latest` for the checkpoint name save_on_oom: bool = True # save if an OOM error is raised save_on_quit: bool = True # save when quitting training export_on_save: bool = False # export weights to local `fp32.pth` state_dict on saving a checkpoint export_on_quit: bool = False # export weights to local `fp32.pth` state_dict on quitting training save_frequency: int = 100 # frequency to save every X iterations keep_last_checkpoints: int = 0 # number of checkpoints to keep, prunes oldest ones load_state_dict: bool = False # loads `fp32.pth` state_dict, will automatically be done if a checkpoint is not found but `fp32.pth` exists load_states: bool = True # strict_loading: bool = False # sets strict_loading=True when loading the state dict load_module_only: bool = False # restart_step_count: bool = False # clears the training stats when loading a checkpoint resize_modules: bool = True # automatically resizes activation_checkpointing: bool | None = None # deprecated, should technically be used for only on activations and not the entire gradients, but HF only has gradient checkpointing gradient_checkpointing: bool = True # enables gradient checkpointing to save VRAM at the cost of slightly reduced performance when training check_for_oom: bool = True # checks for OOMs thrown during forward/backwards gc_mode: str | None = None # deprecated, but marks when to do GC wandb: bool = False # use wandb, if available weight_dtype: str = "float16" # dtype to have the model under amp: bool = False # automatic mixed precision ddp: bool = False # torch's internal DDP, automatically set if local backend is used and multiple GPUs are requested #scale_loss: bool = False # whether to perform loss scaling (for FP16 training) (it actually seems more harmful than not for this specific workload) load_webui: bool = False # load the web UI to allow inferencing during training, to-do: actually make this work backend: str = "local" # training backend to use. currently supports "local" | "deepspeed" deepspeed: DeepSpeed = field(default_factory=lambda: DeepSpeed) # deepspeed settings @cached_property def dtype(self): return coerce_dtype(self.weight_dtype) @cached_property def scale_loss(self): # currently cannot feasibly apply loss scaling with DeepSpeed backend (it can handle it itself anyways) return self.dtype == torch.float16 @dataclass() class Inference: backend: str = "local" # backend to use when inferencing weight_dtype: str = "float16" # dtype to load the model under amp: bool = True # automatic mixed precision during inferencing normalize: bool = False # to-do: actually normalize input / output audio, I believe this might cause issues though batch_size: int = 16 # I don't know what would be a good batch size @property def dtype(self): return coerce_dtype(self.weight_dtype) @dataclass() class Optimizations: injects: bool = False # overwrites default torch classes (not recommended) replace: bool = False # replaces modules in place with the optimized version (recommended) compile: bool | str = False # runs torch.compile on the model linear: bool = True # inject/replace linear for BnB embedding: bool = True # inject/replace embedding for BnB optimizers: bool = True # inject/replace optimizers (BnB, DAdaptation) bitsandbytes: bool = False # use bitsandbytes dadaptation: bool = False # use dadaptation optimizer bitnet: bool = False # use bitnet fp8: bool = False # use fp8 # to-do: validate this madness works still, I don't remember what schizodemon told me to do this model_offloading: dict | None = None # automatically splits the model over a list of devices # example: {"include":["model"], "limits": [ (6 * 1024) * (1024 ** 2), -1 ]} will have the GPU capped to 6GiB, and offload the remaining layers to CPU # example: {"include":["model"], "device": ["cuda:0", "cuda:1"], "limits": [ 0.5, 0.5 ]} will have the GPU 1 try and use 50% of the model, and GPU 2 try and use the other 50% # | {"assign": [[ f'layers.{i}.' for i in range(0,6) ], [ f'layers.{i}.' for i in range(6,12) ]]} will assign layers 0-5 to device 1, and 6-12 to device 2 tensorrt: bool = False unsloth: bool = False # unsloth gradient checkpointing (it just offloads tensors to the CPU during backwards, I don't think it's significant enough to bother with on small models) @dataclass() class Config(BaseConfig): device: str = "cuda" # target device mode: str = "training" # "inferencing" experimental: bool = False # debug flag silent_errors: bool = False # if False, raise exceptions on errors that could silently lead to problems, if True ignore them dataset: Dataset = field(default_factory=lambda: Dataset) models: dict | list | None = field(default_factory=lambda: []) loras: dict | list | None = field(default_factory=lambda: []) hyperparameters: Hyperparameters = field(default_factory=lambda: Hyperparameters) evaluation: Evaluation = field(default_factory=lambda: Evaluation) trainer: Trainer = field(default_factory=lambda: Trainer) inference: Inference = field(default_factory=lambda: Inference) optimizations: Optimizations = field(default_factory=lambda: Optimizations) tokenizer: str | None = None # tokenizer class tokenizer_path: str = "./tokenizer.json" # tokenizer path sample_rate: int = 24_000 # sample rate the model expects audio_backend: str = "vocos" # audio backend to use "encodec" | "vocos" | "dac"" weights_name: str = "fp32" weights_format: str = "sft" # "pth" | "sft" supported_weights_formats: list[str] = field(default_factory=lambda: ["sft", "safetensors", "pt", "pth"]) def set_audio_backend(self, audio_backend): cfg.audio_backend = audio_backend audio_extension = None if audio_backend in ["encodec", "vocos"]: audio_extension = ".enc" cfg.sample_rate = 24_000 cfg.model.resp_levels = 8 elif audio_backend == "dac": audio_extension = ".dac" cfg.sample_rate = 44_100 cfg.model.resp_levels = 9 elif cfg.audio_backend == "audiodec": audio_extension = ".dec" sample_rate = 48_000 cfg.model.resp_levels = 8 # ? else: raise Exception(f"Unknown audio backend: {audio_backend}") @property def audio_backend_extension(self): audio_extension = None if self.audio_backend in ["encodec", "vocos"]: audio_extension = ".enc" elif self.audio_backend == "dac": audio_extension = ".dac" elif self.audio_backend == "audiodec": audio_extension = ".dec" return audio_extension @property def model(self): for i, model in enumerate(self.models): if model.training: return model return self.models[0] if len(self.models) > 0 else None # should be renamed to adapters @property def lora(self): for i, lora in enumerate(self.loras): if lora.training: return lora return self.loras[0] if len(self.loras) > 0 else None @property def distributed(self): return world_size() > 1 @cached_property def get_spkr(self): return eval(self.dataset.speaker_name_getter) @cached_property def get_spkr_group(self): return eval(self.dataset.speaker_group_getter) """ @cached_property def diskcache(self): if self.yaml_path is not None and self.dataset.cache: return diskcache.Cache(self.cache_dir).memoize return lambda: lambda x: x """ # this gets called from vall_e.inference def load_yaml( self, config_path ): tmp = Config.from_yaml( config_path ) self.__dict__.update(tmp.__dict__) def load_model( self, config_path, lora_path=None ): tmp = Config.from_model( config_path, lora_path ) self.__dict__.update(tmp.__dict__) def load_hdf5( self, write=False ): if hasattr(self, 'hdf5'): self.hdf5.close() if self.distributed: self.dataset.hdf5_flag = "r" try: self.hdf5 = h5py.File(f'{self.rel_path}/{self.dataset.hdf5_name}', 'a' if write else self.dataset.hdf5_flag) # to-do, have an easy to set flag that determines if training or creating the dataset except Exception as e: _logger.warning(f"Error while opening HDF5 file: {self.rel_path}/{self.dataset.hdf5_name}: {str(e)}") self.dataset.use_hdf5 = False # a very icky way to handle wildcard expansions def expand( self, path ): if not isinstance( path, Path ): path = Path(path) # do not glob if no wildcard to glob if "*" not in str(path): return [ path ] dir = path.parent name = path.name metadata_parent = cfg.metadata_dir / dir data_parent = cfg.data_dir / dir res = [] # grab any paths from metadata folder (since this is for HDF5) if metadata_parent.exists(): res = [ path.parent / child.stem for child in Path(metadata_parent).glob(name) ] # return if found anything if res: return res # grab anything from the data folder (if no metadata exists) if data_parent.exists(): res = [ path.parent / child.name for child in Path(data_parent).glob(name) ] # return if found anything if res: return res # return an empty list if self.silent_errors: return [] # raise an error to avoid headaches raise Exception(f'Cannot unglob requested path: {path}') def format( self, training=True ): if isinstance(self.dataset, type): self.dataset = dict() if isinstance(self.models, type): self.models = dict() if isinstance(self.loras, type): self.loras = dict() if isinstance(self.hyperparameters, type): self.hyperparameters = dict() if isinstance(self.evaluation, type): self.evaluation = dict() if isinstance(self.trainer, type): self.trainer = dict() if isinstance(self.inference, type): self.inference = dict() if isinstance(self.optimizations, type): self.optimizations = dict() if isinstance( self.dataset, dict ): self.dataset = Dataset(**self.dataset) if isinstance( self.hyperparameters, dict ): self.hyperparameters = Hyperparameters(**self.hyperparameters) if isinstance( self.evaluation, dict ): self.evaluation = Evaluation(**self.evaluation) if isinstance( self.trainer, dict ): self.trainer = Trainer(**self.trainer) if isinstance( self.trainer.deepspeed, dict ): self.trainer.deepspeed = DeepSpeed(**self.trainer.deepspeed) if isinstance( self.inference, dict ): self.inference = Inference(**self.inference) if isinstance( self.optimizations, dict ): self.optimizations = Optimizations(**self.optimizations) # convert to expanded paths self.dataset.training = [ self.expand(dir) for dir in self.dataset.training ] self.dataset.validation = [ self.expand(dir) for dir in self.dataset.validation ] self.dataset.noise = [ self.expand(dir) for dir in self.dataset.noise ] # flatten self.dataset.training = list(itertools.chain.from_iterable(self.dataset.training)) self.dataset.validation = list(itertools.chain.from_iterable(self.dataset.validation)) self.dataset.noise = list(itertools.chain.from_iterable(self.dataset.noise)) # do cleanup for model in self.models: if not isinstance( model, dict ): continue # to-do: prune unused keys in here too automatically if "experimental" not in model or not model["experimental"]: model["experimental"] = {} if "prom_levels" in model: _logger.warning(f"Deprecated flag found: {'cfg.model.prom_levels'}") del model["prom_levels"] if "interleave" in model: _logger.warning(f"Deprecated flag found: {'cfg.model.interleave'}") del model["interleave"] if "p_rvq_levels" in model["experimental"]: model["experimental"]["rvq_levels_p"] = model["experimental"]["p_rvq_levels"] del model["experimental"]["p_rvq_levels"] if "p_len_train" in model["experimental"]: del model["experimental"]["p_len_train"] if "masking_ratio_fixed" in model["experimental"]: del model["experimental"]["masking_ratio_fixed"] self.models = [ Model(**model) if isinstance(model, dict) else model for model in self.models ] self.loras = [ LoRA(**lora) if isinstance(lora, dict) else lora for lora in self.loras ] if not self.models: self.models = [ Model() ] for model in self.models: if isinstance( model.experimental, dict ): model.experimental = ModelExperimentalSettings(**model.experimental) if model.teacher: model.training = False if model.training: model.teacher = False if self.hyperparameters.scheduler_type and not self.hyperparameters.scheduler: self.hyperparameters.scheduler = self.hyperparameters.scheduler_type self.hyperparameters.scheduler_type = "" # do not combine the two if self.hyperparameters.scheduler == "schedulefree" and self.optimizations.dadaptation: self.hyperparameters.scheduler = "" if self.hyperparameters.scheduler == "": self.hyperparameters.torch_scheduler = True if self.trainer.backend == "local" and self.distributed: self.trainer.ddp = True if self.trainer.activation_checkpointing is not None: self.trainer.gradient_checkpointing = self.trainer.activation_checkpointing if not training: self.dataset.use_hdf5 = False # load our HDF5 file if requested here if self.dataset.use_hdf5: self.load_hdf5() # load tokenizer if self.tokenizer == "naive": self.tokenizer = NaiveTokenizer() else: from transformers import PreTrainedTokenizerFast tokenizer_path = self.rel_path / self.tokenizer_path # deduce path if a local copy is not provided if not tokenizer_path.exists(): tokenizer_path = Path("./data/") / self.tokenizer_path if not self.silent_errors and not tokenizer_path.exists(): raise Exception(f'Tokenizer path not found: {tokenizer_path}') self.tokenizer = PreTrainedTokenizerFast(tokenizer_file=str(tokenizer_path)) # Preserves the old behavior class NaiveTokenizer: def get_vocab( self ): """ if cfg.dataset.use_hdf5 and 'symmap' in cfg.hdf5: return json.loads( cfg.hdf5['symmap'].asstr()[()] ) """ return {'': 1, '': 2, ' ': 3, '.': 4, ',': 5, '!': 6, '?': 7, 'p': 7, 'iː': 8, 'ɚ': 9, 'ˌ': 10, 'dˌ': 11, 'mˌ': 12, 'd': 13, 'ɹ': 14, 'tˈ': 15, 'pˌ': 16, 'uː': 17, 'l': 18, 'æ': 19, 'ɛ': 20, 'ɪ': 21, 'j': 22, 'ʊ': 23, 't': 24, 'n': 25, 'v': 26, 'a': 27, 'o': 28, 'ŋ': 29, 'w': 30, 'ʌ': 31, 'hˈ': 32, 'ɡˈ': 33, 'ə': 34, 'θˈ': 35, 'dˈ': 36, 'wˌ': 37, 'h': 38, 'z': 39, 'k': 40, 'ð': 41, 'ɡˌ': 42, 'ˈ': 43, 'fˈ': 44, 'i': 45, 's': 46, 'ʃ': 47, 'wˈ': 48, 'ðˈ': 49, 'ɹˈ': 50, 'lˈ': 51, 'ɡ': 52, 'oː': 53, 'mˈ': 54, 'e': 55, 'ɑː': 56, 'nˈ': 57, 'm': 58, 'θˌ': 59, 'sˈ': 60, 'f': 61, 'ɔː': 62, 'hˌ': 63, 'b': 64, 'jˈ': 65, 'ɐ': 66, 'ʒˈ': 67, 'θ': 68, 'bˈ': 69, 'ɾ': 70, 'ɜː': 71, 'ʌˈ': 72, 'ʃˌ': 73, 'bˌ': 74, 'kˈ': 75, 'ɔ': 76, 'zˈ': 77, 'ᵻ': 78, 'kˌ': 79, 'vˈ': 80, 'fˌ': 81, 'ʒ': 82, 'ʃˈ': 83, 'ɹˌ': 84, 'tˌ': 85, 'pˈ': 86, 'ðˌ': 87, 'sˌ': 88, 'nˌ': 89, 'lˌ': 90, '̩': 91, 'ʔ': 92, 'vˌ': 93, 'ɪˈ': 94, '"': 95, 'ɪˌ': 96, 'ʒˌ': 97, 'uːˌ': 98, 'ʊˈ': 99, 'jˌ': 100, 'uːˈ': 101, 'iːˈ': 102, 'zˌ': 103, '.ˈ': 104, '…': 105, 'ŋˌ': 106, 'ɐˌ': 107, '—ˈ': 108, 'iˌ': 109, 'iːˌ': 110, 'ɛː': 111, ')': 112, ')ˈ': 113, '(': 114, 'u': 115, '-': 116, 'ɖˈ': 117, 'iˈ': 118, 'ʰˈ': 119, 'ɟˈ': 120, '̃': 121, 'eː': 122, 'ɾˈ': 123, 'r': 124, 'ʰ': 125, '-ˌ': 126, 'ɫ': 127, 'q': 128, '—': 129, 'ʊˌ': 130, 'aː': 131, 'cˈ': 132, '…ˈ': 133, 'c': 134, 'ɳ': 135, 'ɐˈ': 136, 'x': 137, 'ʔˌ': 138, '.ˌ': 139, 'ɑ': 140, '?ˈ': 141, '̩ˈ': 142, '"ˈ': 143, ',ˈ': 144, 'ŋˈ': 145, 'əˌ': 146, '!ˈ': 147, '"ˌ': 148, '?ˌ': 149, ',ˌ': 150, '—ˌ': 151, '̩ˌ': 152, 'əˈ': 153, '!ˌ': 154, 'ɬ': 155, 'ʲ': 156, '¡': 157, 'ɯ': 158, 'qˌ': 159, 'ʑ': 160, 'ʑˈ': 161, '¿': 162, 'ɑːˈ': 163, 'iːː': 164, 'ɛˈ': 165, '¡ˈ': 166, 'æˈ': 167, 'ç': 168, 'ɾˌ': 169, 'ᵻˈ': 170, 'xˈ': 171, 'ɔːˈ': 172, ';': 173, 'ɬˌ': 174, ':': 175, 'ʔˈ': 176, 'ɑːˌ': 177, 'ɬˈ': 178, '”': 179, '“': 180, '“ˈ': 181, '“ˌ': 182, ';ˈ': 183, ';ˌ': 184, ':ˈ': 185, '1': 186, 'rˈ': 187, 'qˈ': 188, 'ᵻˌ': 189, 'ä': 190, '̞ˌ': 191, '̞': 192, 'ũˌ': 193, 'ʑˌ': 194, 'ᵝ': 195, 'ɽ': 196, 'ʲˌ': 197, 'ᵝˌ': 198, 'ũ': 199, 'ũˈ': 200, 'äˌ': 201, 'ɕ': 202, 'ɕˌ': 203, 'ɽˌ': 204, 'çˌ': 205, '…ˌ': 206, '̞ˈ': 207, 'äˈ': 208, 'ɽˈ': 209, 'ɸˌ': 210, 'ɴ': 211, 'ɸˈ': 212, 'ɕˈ': 213, 'ɸ': 214, 'ᵝˈ': 215, 'ʲˈ': 216, 'ĩ': 217, 'çˈ': 218, 'ĩˌ': 219, 'oˌ': 220, 'eˈ': 221, 'ʍ': 222, 'eˌ': 223, 'uˌ': 224, 'ʍˌ': 225, 'uˈ': 226, 'oˈ': 227, 'aˈ': 228} @cached_property def _bos_token( self ): return self.get_vocab()[""] @cached_property def _eos_token( self ): return self.get_vocab()[""] def encode( self, s ): symmap = self.get_vocab() phones = " ".join( list(s) ) # do merge for merge in [ "\u02C8", "\u02CC", "\u02D0" ]: phones = phones.replace( f' {merge}', merge ) phones = phones.split(" ") # cleanup phones = [ p for i, p in enumerate(phones) if p not in [" "] or ( p in [" "] and p != phones[i-1] ) ] # add bos / eos phones = [""] + [ " " if not p else p for p in phones ] + [""] # tokenize return [*map(symmap.get, phones)] def decode( self, t ): s = "" symmap = self.get_vocab() reverse_symmap = {} for k, v in symmap.items(): reverse_symmap[v] = k for i, token in enumerate( t ): s += reverse_symmap[token] return s _logger = logging.getLogger(__name__) cfg = Config.from_cli() # some safety for remapping deprecated formats and re-coercing uninitialized properties into actual types try: cfg.format() except Exception as e: if not cfg.silent_errors: raise e # throw an error because I'm tired of silent errors messing things up for me _logger.error(f"Error while parsing config YAML: {str(e)}") if __name__ == "__main__": print(cfg)