import torch import torchaudio import soundfile from torch import Tensor from einops import rearrange from pathlib import Path from .emb import g2p, qnt from .emb.qnt import trim, trim_random from .utils import to_device from .config import cfg from .models import get_models from .train import load_engines from .data import get_phone_symmap, _load_quants class TTS(): def __init__( self, config=None, ar_ckpt=None, nar_ckpt=None, device=None, amp=None, dtype=None ): self.loading = True self.input_sample_rate = 24000 self.output_sample_rate = 24000 if config: cfg.load_yaml( config ) cfg.dataset.use_hdf5 = False # could use cfg.load_hdf5(), but why would it ever need to be loaded for inferencing try: cfg.format() except Exception as e: pass if amp is None: amp = cfg.inference.amp if dtype is None: dtype = cfg.inference.dtype if device is None: device = cfg.device cfg.mode = "inferencing" cfg.device = device cfg.trainer.load_state_dict = True cfg.trainer.backend = "local" cfg.trainer.weight_dtype = dtype cfg.inference.weight_dtype = dtype self.device = device self.dtype = cfg.inference.dtype self.amp = amp self.symmap = None if ar_ckpt and nar_ckpt: self.ar_ckpt = ar_ckpt self.nar_ckpt = nar_ckpt models = get_models(cfg.models.get()) for name, model in models.items(): if name.startswith("ar+nar"): self.ar = model state = torch.load(self.ar_ckpt) if "symmap" in state: self.symmap = state['symmap'] if "module" in state: state = state['module'] self.ar.load_state_dict(state) self.ar = self.ar.to(self.device, dtype=self.dtype if not self.amp else torch.float32) self.nar = self.ar elif name.startswith("ar"): self.ar = model state = torch.load(self.ar_ckpt) if "symmap" in state: self.symmap = state['symmap'] if "module" in state: state = state['module'] self.ar.load_state_dict(state) self.ar = self.ar.to(self.device, dtype=self.dtype if not self.amp else torch.float32) elif name.startswith("nar"): self.nar = model state = torch.load(self.nar_ckpt) if "symmap" in state: self.symmap = state['symmap'] if "module" in state: state = state['module'] self.nar.load_state_dict(state) self.nar = self.nar.to(self.device, dtype=self.dtype if not self.amp else torch.float32) else: self.load_models() if self.symmap is None: self.symmap = get_phone_symmap() self.ar.eval() self.nar.eval() self.loading = False def load_models( self ): engines = load_engines() for name, engine in engines.items(): if name[:6] == "ar+nar": self.ar = engine.module.to(self.device, dtype=self.dtype if not self.amp else torch.float32) self.nar = self.ar elif name[:2] == "ar": self.ar = engine.module.to(self.device, dtype=self.dtype if not self.amp else torch.float32) elif name[:3] == "nar": self.nar = engine.module.to(self.device, dtype=self.dtype if not self.amp else torch.float32) def encode_text( self, text, language="en" ): # already a tensor, return it if isinstance( text, Tensor ): return text content = g2p.encode(text, language=language) # ick try: phones = [""] + [ " " if not p else p for p in content ] + [""] return torch.tensor([*map(self.symmap.get, phones)]) except Exception as e: pass phones = [ " " if not p else p for p in content ] return torch.tensor([ 1 ] + [*map(self.symmap.get, phones)] + [ 2 ]) def encode_audio( self, paths, trim_length=0.0 ): # already a tensor, return it if isinstance( paths, Tensor ): return paths # split string into paths if isinstance( paths, str ): paths = [ Path(p) for p in paths.split(";") ] # merge inputs res = torch.cat([qnt.encode_from_file(path)[0][:, :].t().to(torch.int16) for path in paths]) if trim_length: res = trim( res, int( 75 * trim_length ) ) return res @torch.inference_mode() def inference( self, text, references, max_ar_steps=6 * 75, max_nar_levels=7, input_prompt_length=0.0, ar_temp=0.95, nar_temp=0.5, top_p=1.0, top_k=0, repetition_penalty=1.0, repetition_penalty_decay=0.0, length_penalty=0.0, out_path=None ): if out_path is None: out_path = f"./data/{cfg.start_time}.wav" prom = self.encode_audio( references, trim_length=input_prompt_length ) phns = self.encode_text( text ) prom = to_device(prom, self.device).to(torch.int16) phns = to_device(phns, self.device).to(torch.uint8 if len(self.symmap) < 256 else torch.int16) with torch.autocast("cuda", dtype=self.dtype, enabled=self.amp): resps_list = self.ar(text_list=[phns], proms_list=[prom], max_steps=max_ar_steps, sampling_temperature=ar_temp, sampling_top_p=top_p, sampling_top_k=top_k, sampling_repetition_penalty=repetition_penalty, sampling_repetition_penalty_decay=repetition_penalty_decay, sampling_length_penalty=length_penalty) resps_list = [r.unsqueeze(-1) for r in resps_list] resps_list = self.nar(text_list=[phns], proms_list=[prom], resps_list=resps_list, max_levels=max_nar_levels, sampling_temperature=nar_temp, sampling_top_p=top_p, sampling_top_k=top_k, sampling_repetition_penalty=repetition_penalty, sampling_repetition_penalty_decay=repetition_penalty_decay, sampling_length_penalty=length_penalty) wav, sr = qnt.decode_to_file(resps_list[0], out_path, device=self.device) return (wav, sr)