#pragma once // stores all the backend stuff // external deps #include #include #include #include #define LLAMA_CPP_EXTENDED 0 // whether the underlying llama.cpp has some extra functions #define LLAMA_CPP_USE_VALL_E_ARCH 0 // whether the underlying llama.cpp is to use the VALL_E arch (or using LLAMA arch) #if !LLAMA_CPP_EXTENDED #include "llama_hack.h" // cringe hotfix but I have to do this until llama.cpp's API exposes the tok_embd #endif // to-do: clean up spaghetti enums const int EMBEDDING_MODE_PROM = 0; const int EMBEDDING_MODE_RESP_AR_NAR = 1; const int EMBEDDING_MODE_RESP_NAR_LEN = 2; const int INFERENCE_MODE_LEN = 0; const int INFERENCE_MODE_AR = 1; const int INFERENCE_MODE_NAR_DEMASK = 2; const int INFERENCE_MODE_NAR = 3; // stores metadata for inputs/outputs struct io_t { std::string name; uint32_t start; uint32_t end; int32_t head_idx = -1; int32_t n_embd = 0; int32_t n_vocab = 0; std::vector embds = {}; ggml_tensor* head = NULL; }; // stores the mappings between tokens, input embeddings, and output heads struct io_map_t { // model's original params int32_t n_embd = 0; int32_t n_vocab = 0; // mapping std::unordered_map io = {}; // context to store slices ggml_context* ctx = NULL; }; // used for top-k (mainly for demasking) struct score_t { int32_t idx; float value; bool operator<( const score_t& that ) const { return this->value < that.value; } }; // handles storing metadata for token merges struct merge_entry_t { std::u32string pre; std::u32string post; std::u32string resolved; token_t pre_token; token_t post_token; token_t resolved_token; }; // helper tensor functions std::vector read_2d_tensor( struct ggml_tensor* tensor ); //ggml_tensor* view_2d_tensor( ggml_tensor* tensor, int32_t start, int32_t end, int32_t dim = 0 ); // cringe method to keep in my pocket ggml_tensor* view_2d_tensor( ggml_context* ctx, ggml_tensor* tensor, int32_t start, int32_t end, int32_t dim = 0 ); void print_tokens( const std::vector& tokens, const std::string& prefix = "Tokens: " ); std::vector> map_embeddings( const std::vector& tokens, int n_embd, const float* embds ); std::vector> sum_embeddings( const vall_e_audio_codes_t& input, int n_embd, int rvq_l, const float** embds, int mode = EMBEDDING_MODE_PROM ); std::vector soft_max( int n_logits, const float* logits ); // batch and inferencing void batch_add( llama_batch& batch, token_t id, int n_embd, const float* embds, llama_pos pos, bool output, const std::vector & seq_ids = {0} ); void fill_batch( llama_batch& batch, vall_e_inputs_t& input, io_map_t& inputs_map, int mode ); std::vector generate( vall_e_context_t* ctx, vall_e_inputs_t& input, int max_tokens, int mode, bool verbose = true ); // (handles text) std::vector phonemize( vall_e_context_t* ctx, const std::string& text, const std::string& language = "auto" ); // model-accessing helpers const io_t& vall_e_inputs_map_get_embeddings( io_map_t& inputs_map, const std::string& name ); const float* vall_e_inputs_map_get_embeddings_p( io_map_t& inputs_map, const std::string& name ); int32_t vall_e_inputs_map_get_classifier_idx( io_map_t& inputs_map, const std::string& name ); void vall_e_inputs_map_init( io_map_t&, llama_model* model );