from ..config import cfg import argparse import random import torch import torchaudio from functools import cache from pathlib import Path from typing import Union from einops import rearrange from torch import Tensor from tqdm import tqdm try: from encodec import EncodecModel from encodec.utils import convert_audio except Exception as e: cfg.inference.use_encodec = False try: from vocos import Vocos except Exception as e: cfg.inference.use_vocos = False try: from dac import DACFile from audiotools import AudioSignal from dac.utils import load_model as __load_dac_model """ Patch decode to skip things related to the metadata (namely the waveform trimming) So far it seems the raw waveform can just be returned without any post-processing A smart implementation would just reuse the values from the input prompt """ from dac.model.base import CodecMixin @torch.no_grad() def CodecMixin_decompress( self, obj: Union[str, Path, DACFile], verbose: bool = False, ) -> AudioSignal: self.eval() if isinstance(obj, (str, Path)): obj = DACFile.load(obj) original_padding = self.padding self.padding = obj.padding range_fn = range if not verbose else tqdm.trange codes = obj.codes original_device = codes.device chunk_length = obj.chunk_length recons = [] for i in range_fn(0, codes.shape[-1], chunk_length): c = codes[..., i : i + chunk_length].to(self.device) z = self.quantizer.from_codes(c)[0] r = self.decode(z) recons.append(r.to(original_device)) recons = torch.cat(recons, dim=-1) recons = AudioSignal(recons, self.sample_rate) # to-do, original implementation if not hasattr(obj, "dummy") or not obj.dummy: resample_fn = recons.resample loudness_fn = recons.loudness # If audio is > 10 minutes long, use the ffmpeg versions if recons.signal_duration >= 10 * 60 * 60: resample_fn = recons.ffmpeg_resample loudness_fn = recons.ffmpeg_loudness recons.normalize(obj.input_db) resample_fn(obj.sample_rate) recons = recons[..., : obj.original_length] loudness_fn() recons.audio_data = recons.audio_data.reshape( -1, obj.channels, obj.original_length ) self.padding = original_padding return recons CodecMixin.decompress = CodecMixin_decompress except Exception as e: cfg.inference.use_dac = False print(str(e)) # uses https://github.com/facebookresearch/AudioDec/ # I have set up a pip-ify'd version with the caveat of having to manually handle downloading the checkpoints with a wget + unzip # I was not happy with testing, it sounded rather mediocre. """ try: from audiodec.utils.audiodec import AudioDec, assign_model as _audiodec_assign_model except Exception as e: cfg.inference.use_audiodec = False print(str(e)) """ @cache def _load_encodec_model(device="cuda", levels=cfg.model.max_levels): assert cfg.sample_rate == 24_000 # too lazy to un-if ladder this shit bandwidth_id = 6.0 if levels == 2: bandwidth_id = 1.5 elif levels == 4: bandwidth_id = 3.0 elif levels == 8: bandwidth_id = 6.0 # Instantiate a pretrained EnCodec model model = EncodecModel.encodec_model_24khz() model.set_target_bandwidth(bandwidth_id) model = model.to(device) model = model.eval() # extra metadata model.bandwidth_id = bandwidth_id model.sample_rate = cfg.sample_rate model.normalize = cfg.inference.normalize model.backend = "encodec" return model @cache def _load_vocos_model(device="cuda", levels=cfg.model.max_levels): assert cfg.sample_rate == 24_000 model = Vocos.from_pretrained("charactr/vocos-encodec-24khz") model = model.to(device) model = model.eval() # too lazy to un-if ladder this shit bandwidth_id = 2 if levels == 2: bandwidth_id = 0 elif levels == 4: bandwidth_id = 1 elif levels == 8: bandwidth_id = 2 # extra metadata model.bandwidth_id = torch.tensor([bandwidth_id], device=device) model.sample_rate = cfg.sample_rate model.backend = "vocos" return model @cache def _load_dac_model(device="cuda", levels=cfg.model.max_levels): kwargs = dict(model_type="44khz",model_bitrate="8kbps",tag="latest") if not cfg.variable_sample_rate: # yes there's a better way, something like f'{cfg.sample.rate//1000}hz' if cfg.sample_rate == 44_000 or cfg.sample_rate == 44_100: # because I messed up and had assumed it was an even 44K and not 44.1K kwargs["model_type"] = "44khz" elif cfg.sample_rate == 16_000: kwargs["model_type"] = "16khz" else: raise Exception(f'unsupported sample rate: {cfg.sample_rate}') model = __load_dac_model(**kwargs) model = model.to(device) model = model.eval() # to revisit later, but experiments shown that this is a bad idea if cfg.variable_sample_rate: model.sample_rate = cfg.sample_rate model.backend = "dac" model.model_type = kwargs["model_type"] return model @cache def _load_audiodec_model(device="cuda", model_name=None, levels=cfg.model.max_levels): if not model_name: model_name = "libritts_v1" if cfg.sample_rate == 24_000 else "vctk_v1" sample_rate, encoder_checkpoint, decoder_checkpoint = _audiodec_assign_model(model_name) model = AudioDec(tx_device=device , rx_device=device ) model.load_transmitter(encoder_checkpoint) model.load_receiver(encoder_checkpoint, decoder_checkpoint) model.backend = "audiodec" model.sample_rate = sample_rate return model @cache def _load_model(device="cuda", backend=None, levels=cfg.model.max_levels): if not backend: backend = cfg.audio_backend if backend == "audiodec": return _load_audiodec_model(device, levels=levels) if backend == "dac": return _load_dac_model(device, levels=levels) if backend == "vocos": return _load_vocos_model(device, levels=levels) return _load_encodec_model(device, levels=levels) def unload_model(): _load_model.cache_clear() _load_encodec_model.cache_clear() # because vocos can only decode @torch.inference_mode() def decode(codes: Tensor, device="cuda", levels=cfg.model.max_levels, metadata=None): # upcast so it won't whine if codes.dtype == torch.int8 or codes.dtype == torch.int16 or codes.dtype == torch.uint8: codes = codes.to(torch.int32) # expand if we're given a raw 1-RVQ stream if codes.dim() == 1: codes = rearrange(codes, "t -> 1 1 t") # expand to a batch size of one if not passed as a batch # vocos does not do batch decoding, but encodec does, but we don't end up using this anyways *I guess* # to-do, make this logical elif codes.dim() == 2: codes = rearrange(codes, "t q -> 1 q t") assert codes.dim() == 3, f'Requires shape (b q t) but got {codes.shape}' # load the model model = _load_model(device, levels=levels) # AudioDec uses a different pathway if model.backend == "audiodec": codes = codes.to( device=device )[0] zq = model.rx_encoder.lookup( codes ) wav = model.decoder.decode(zq).squeeze(1) return wav, model.sample_rate # DAC uses a different pathway if model.backend == "dac": dummy = False if metadata is None: metadata = dict( chunk_length= codes.shape[-1], original_length=0, input_db=-12, channels=1, sample_rate=model.sample_rate, padding=True, dac_version='1.0.0', ) dummy = True elif hasattr( metadata, "__dict__" ): metadata = metadata.__dict__ # generate object with copied metadata artifact = DACFile( codes = codes, chunk_length = metadata["chunk_length"], original_length = metadata["original_length"], input_db = metadata["input_db"], channels = metadata["channels"], sample_rate = metadata["sample_rate"], padding = metadata["padding"], dac_version = metadata["dac_version"], ) artifact.dummy = dummy # to-do: inject the sample rate encoded at, because we can actually decouple return CodecMixin_decompress(model, artifact, verbose=False).audio_data[0], artifact.sample_rate kwargs = {} if model.backend == "vocos": x = model.codes_to_features(codes[0]) kwargs['bandwidth_id'] = model.bandwidth_id else: # encodec will decode as a batch x = [(codes.to(device), None)] wav = model.decode(x, **kwargs) # encodec will decode as a batch if model.backend == "encodec": wav = wav[0] return wav, model.sample_rate # huh def decode_to_wave(resps: Tensor, device="cuda", levels=cfg.model.max_levels): return decode(resps, device=device, levels=levels) def decode_to_file(resps: Tensor, path: Path, device="cuda"): wavs, sr = decode(resps, device=device) torchaudio.save(str(path), wavs.cpu(), sr) return wavs, sr def _replace_file_extension(path, suffix): return (path.parent / path.name.split(".")[0]).with_suffix(suffix) # an experimental way to include "trained" embeddings from the audio backend itself # > b-but why not just initialize the embedding weights to these instead of fetching them at r-runtime # each audio backend does their "embeddings" a different way that isn't just a embedding weights # # this is overkill and I don't feel like this benefits anything, but it was an idea I had # this only really works if the embedding dims match, and either a Linear to rescale would be needed or semi-erroneously just padding with 0s @torch.inference_mode() def encode_as_embedding(codes: Tensor, quant_level: int = 0, sums=False, device="cuda"): model = _load_model(device) codes = codes.to(device=device, dtype=torch.int32) # yucky kludge if sums: if codes.dim() == 1: codes = rearrange(codes, "t -> t 1") if cfg.audio_backend == "dac": x = [] for i in range(quant_level+1): emb = model.quantizer.quantizers[i] code = rearrange(codes[:, quant_level], "t -> 1 t") xi = emb.decode_code(code) xi = emb.out_proj(xi) x.append( xi[0].t() ) return sum(x).detach() raise Exception(f'Currently only DAC is supported') if codes.dim() == 2: codes = codes[:, quant_level] codes = rearrange(codes, "t -> 1 t") # dac conveniently has its dim = 1024 if cfg.audio_backend == "dac": emb = model.quantizer.quantizers[quant_level] x = emb.decode_code(codes) x = emb.out_proj(x) x = x[0].t().detach() return x """ # vocos inconveniently has its dim = 128 elif cfg.audio_backend == "vocos": x = model.codes_to_features(codes) # encodec inconveniently has its dim = 300 elif cfg.audio_backend == "encodec": ... """ raise Exception(f'Currently only DAC is supported') @torch.inference_mode() def encode(wav: Tensor, sr: int = cfg.sample_rate, device="cuda", levels=cfg.model.max_levels, return_metadata=True): # DAC uses a different pathway if cfg.audio_backend == "dac": model = _load_dac_model(device, levels=levels ) signal = AudioSignal(wav, sample_rate=sr) if not isinstance(levels, int): levels = 8 if model.model_type == "24khz" else None with torch.autocast("cuda", dtype=cfg.inference.dtype, enabled=cfg.inference.amp): artifact = model.compress(signal, win_duration=None, verbose=False, n_quantizers=levels) #artifact = model.compress(signal, n_quantizers=levels) return artifact.codes if not return_metadata else artifact # AudioDec uses a different pathway if cfg.audio_backend == "audiodec": model = _load_audiodec_model(device, levels=levels ) wav = wav.unsqueeze(0) wav = convert_audio(wav, sr, model.sample_rate, 1) wav = wav.to(device) # wav = rearrange(wav, "t c -> t 1 c").to(device) encoded = model.tx_encoder.encode(wav) quantized = model.tx_encoder.quantize(encoded) return quantized # vocos does not encode wavs to encodecs, so just use normal encodec model = _load_encodec_model(device, levels=levels) wav = wav.unsqueeze(0) wav = convert_audio(wav, sr, model.sample_rate, model.channels) wav = wav.to(device) with torch.autocast("cuda", dtype=cfg.inference.dtype, enabled=cfg.inference.amp): encoded_frames = model.encode(wav) qnt = torch.cat([encoded[0] for encoded in encoded_frames], dim=-1) # (b q t) return qnt def encode_from_files(paths, device="cuda"): tuples = [ torchaudio.load(str(path)) for path in paths ] wavs = [] main_sr = tuples[0][1] for wav, sr in tuples: assert sr == main_sr, "Mismatching sample rates" if wav.shape[0] == 2: wav = wav[:1] wavs.append(wav) wav = torch.cat(wavs, dim=-1) return encode(wav, sr, device) def encode_from_file(path, device="cuda"): if isinstance( path, list ): return encode_from_files( path, device ) else: path = str(path) wav, sr = torchaudio.load(path) if wav.shape[0] == 2: wav = wav[:1] qnt = encode(wav, sr, device) return qnt """ Helper Functions """ # trims from the start, up to `target` def trim( qnt, target, reencode=False, device="cuda" ): length = max( qnt.shape[0], qnt.shape[1] ) if target > 0: start = 0 end = start + target if end >= length: start = length - target end = length # negative length specified, trim from end else: start = length + target end = length if start < 0: start = 0 if not reencode: return qnt[start:end] if qnt.shape[0] > qnt.shape[1] else qnt[:, start:end] # trims on the waveform itself # need to test start = start / cfg.dataset.frames_per_second * cfg.sample_rate end = end / cfg.dataset.frames_per_second * cfg.sample_rate wav = decode(qnt, device=device)[0] return encode(wav[start:end], cfg.sample_rate, device=device)[0].t() # trims a random piece of audio, up to `target` # to-do: try and align to EnCodec window def trim_random( qnt, target ): length = max( qnt.shape[0], qnt.shape[1] ) start = int(length * random.random()) end = start + target if end >= length: start = length - target end = length return qnt[start:end] if qnt.shape[0] > qnt.shape[1] else qnt[:, start:end] # repeats the audio to fit the target size def repeat_extend_audio( qnt, target ): pieces = [] length = 0 while length < target: pieces.append(qnt) length += qnt.shape[0] return trim(torch.cat(pieces), target) # interleaves between a list of audios # useful for interleaving silence def interleave_audio( *args, audio=None ): qnts = [ *args ] qnts = [ qnt for qnt in qnts if qnt is not None ] if audio is None: return qnts # interleave silence # yes there's a better way res = [] for i, qnt in enumerate(qnts): res.append( qnt ) if i + 1 != len(qnts): res.append( audio ) return res # concats two audios together def concat_audio( *args, reencode=False, device="cuda", levels=cfg.model.max_levels ): qnts = [ *args ] qnts = [ qnt for qnt in qnts if qnt is not None ] # just naively combine the codes if not reencode: return torch.concat( qnts ) decoded = [ decode(qnt, device=device, levels=levels)[0] for qnt in qnts ] combined = torch.concat( decoded ) return encode(combined, cfg.sample_rate, device=device, levels=levels)[0].t() # merges two quantized audios together # requires re-encoding because there's no good way to combine the waveforms of two audios without relying on some embedding magic def merge_audio( *args, device="cuda", scale=[], levels=cfg.model.max_levels ): qnts = [ *args ] qnts = [ qnt for qnt in qnts if qnt is not None ] decoded = [ decode(qnt, device=device, levels=levels)[0] for qnt in qnts ] # max length max_length = max([ wav.shape[-1] for wav in decoded ]) for i, wav in enumerate(decoded): delta = max_length - wav.shape[-1] if delta <= 0: continue pad = torch.zeros( (1, delta), dtype=wav.dtype, device=wav.device ) decoded[i] = torch.cat( [ wav, pad ], dim=-1 ) # useful to adjust the volumes of each waveform if len(scale) == len(decoded): for i in range(len(scale)): decoded[i] = decoded[i] * scale[i] combined = sum(decoded) / len(decoded) return encode(combined, cfg.sample_rate, device=device, levels=levels)[0].t() """ if __name__ == "__main__": cfg.sample_rate = 48_000 cfg.audio_backend = "audiodec" wav, sr = torchaudio.load("in.wav") codes = encode( wav, sr ).t() # for some reason print( "ENCODED:", codes.shape, codes ) wav, sr = decode( codes ) print( "DECODED:", wav.shape, wav ) torchaudio.save("out.wav", wav.cpu(), sr) """