import math import torch import torch.nn.functional as F import traceback from typing import Literal, overload from functools import partial from einops import rearrange from torch import Tensor, einsum, nn from torch.distributions import Categorical from torch.nn.utils.rnn import pad_sequence from torch.utils.checkpoint import checkpoint from torchmetrics.classification import BinaryAccuracy, MulticlassAccuracy, MulticlassPrecision from .retnet import RetNetDecoder, RetNetConfig from .transformer import SinusoidalEmbedding, Block as TransformerBlock def _create_mask(l, device): """1 is valid region and 0 is invalid.""" seq = torch.arange(max(l), device=device).unsqueeze(0) # (1 t) stop = torch.tensor(l, device=device).unsqueeze(1) # (b 1) return (seq < stop).float() # (b t) def _join(x: tuple[Tensor], sep: Tensor): """ Args: x: (k t d) sep: (d) """ ret = x[0] for i in range(1, len(x)): ret = torch.cat((ret, sep[None], x[i]), dim=0) return ret def list_to_tensor(x_list: list[Tensor], pattern="t b c -> b t c"): """ Args: x_list: [(t d)] Returns: x: (? ? ?) m: (? ? ?), same as x """ l = list(map(len, x_list)) x = rearrange(pad_sequence(x_list), pattern) m = _create_mask(l, x_list[0].device) m = m.t().unsqueeze(-1) # (t b 1) m = rearrange(m, pattern) m = m.to(x) return x, m # Simple filter to modify a token's probability if it shows up in the past # `one_time` will only apply the penalty once # `decay` is a factor that will exponentially apply to how far away it is def reptition_penalize( logits, previous, factor=1.0, decay=0.0, one_time=True ): if factor == 1.0: return logits unique = set() priors = reversed(previous.tolist()) for distance, token in enumerate(priors): # skip if we're only applying the decay once if one_time and token in unique: continue distance += 1 logits[:, token] /= factor * (distance ** decay) # add to set if we care about it if one_time: unique.add(token) return logits # Simple "filter" that modifies the logit for the stop token, based on the sequence length # `length` is the length of the sequence currently # `factor` is the power the length is raised to, so values > 0 will yield longer sequences, values < 0 will yield shorter sequences # `token` is the stop token. def length_penalize( logits, length, factor=0.0, token=-1 ): if factor == 0.0: return logits logits[:, token] /= (length ** factor) return logits # Credit to https://github.com/microsoft/unilm/blob/master/xtune/src/transformers/modeling_utils.py#L1145 / https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317 def top_k_top_p_filtering( logits, top_k=0, top_p=1.0, filter_value=-float("Inf"), min_tokens=1 ): """Filter a distribution of logits using top-k and/or nucleus (top-p) filtering Args: logits: logits distribution shape (batch size, vocabulary size) if top_k > 0: keep only top k tokens with highest probability (top-k filtering). if top_p < 1.0: keep the top tokens with cumulative probability >= top_p (nucleus filtering). Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751) Make sure we keep at least min_tokens per batch example in the output """ if top_k > 0: top_k = min(max(top_k, min_tokens), logits.size(-1)) # Safety check # Remove all tokens with a probability less than the last token of the top-k indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None] logits[indices_to_remove] = filter_value if top_p < 1.0: sorted_logits, sorted_indices = torch.sort(logits, descending=True) cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1) # Remove tokens with cumulative probability above the threshold (token with 0 are kept) sorted_indices_to_remove = cumulative_probs > top_p if min_tokens > 1: # Keep at least min_tokens (set to min_tokens-1 because we add the first one below) sorted_indices_to_remove[..., :min_tokens] = 0 # Shift the indices to the right to keep also the first token above the threshold sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone() sorted_indices_to_remove[..., 0] = 0 # scatter sorted tensors to original indexing indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove) logits[indices_to_remove] = filter_value return logits # automagically parses a batch-list and returns it as a list class Embedding(nn.Embedding): def forward(self, x_list: list[Tensor]) -> list[Tensor]: if len(x_list) == 0: return [] return super().forward(torch.cat(x_list)).split([*map(len, x_list)]) class MultiEmbedding(nn.Embedding): """ This embedding sums embeddings on different levels. """ def __init__(self, max_n_levels, n_tokens, token_dim, monolithic=False): super().__init__(max_n_levels, token_dim) self.monolithic = monolithic self.max_n_levels = max_n_levels self.n_tokens = n_tokens self.weight = nn.Parameter(torch.randn(max_n_levels, n_tokens, token_dim)) # to-do: select quant level from given quant_levels tensor if given (i.e. through the resp_emb) # I imagine this is an oversight in the NAR. def forward(self, x_list: list[Tensor], quant_levels: Tensor | None = None) -> list[Tensor]: if len(x_list) == 0: return [] # this "strategy" will reserve the weight[0] for te AR and weight[1:] for the NAR # the NAR cannot share RVQ-bin level 0 with the AR for the resp_emb if self.monolithic: w = self.weight[:1] if quant_levels is None else self.weight[1:] else: w = self.weight padded_x_list = [] for i, xi in enumerate(x_list): xi = F.one_hot(xi.to(torch.int64), num_classes=self.n_tokens) # t l' k wi = w.shape[0] - xi.shape[1] xi = F.pad(xi, (0, 0, 0, wi)) # t l k padded_x_list.append(xi.to(w)) x = torch.cat(padded_x_list) # n l k x = einsum("l k d, n l k -> n d", w, x) x_list = x.split([*map(len, x_list)]) return x_list """ # Embedding that sums each RVQ-bin level within a given input acoustic prompt class PromEmbedding(nn.Module): def __init__(self, n_levels, n_tokens, token_dim): super().__init__() self.n_levels = n_levels self.embeddings = nn.ModuleList([nn.Embedding(n_tokens, token_dim) for _ in range(self.n_levels)]) def forward(self, x_list: list[Tensor] ) -> list[Tensor]: return [ sum([ self.embeddings[k](xi[:, k]) for k in range(xi.shape[-1]) ]) for i, xi in enumerate(x_list) ] # Embedding that selects which embedding based on a quant_level tensor for a given batch class RespEmbedding(nn.Module): def __init__(self, n_levels, n_tokens, token_dim): super().__init__() self.n_levels = n_levels self.embeddings = nn.ModuleList([nn.Embedding(n_tokens, token_dim) for _ in range(self.n_levels)]) def forward(self, x_list: list[Tensor], quant_levels: Tensor | None = None) -> list[Tensor]: return [ self.embeddings[min(self.n_levels, quant_levels[i]) if quant_levels is not None else 0](xi)[:, 0, :] for i, xi in enumerate(x_list) ] """ class Base(nn.Module): @property def causal(self) -> bool: raise NotImplementedError @property def arch_type(self) -> str: raise NotImplementedError @property def norm_type(self): raise NotImplementedError @property def n_prom_levels(self) -> int: raise NotImplementedError @property def n_resp_levels(self) -> int: raise NotImplementedError @property def n_max_levels(self) -> int: raise NotImplementedError @property def n_tasks(self) -> int: raise NotImplementedError @property def recurrent_chunk_size(self) -> int: raise NotImplementedError @property def interleave(self) -> bool: return False @property def monolithic(self) -> bool: return False @property def n_embeddings(self) -> int: return 2 if self.monolithic else 1 @property def stop_token(self): if not self.causal: raise ValueError("Not using stop token!") return self.n_tokens @property def ignore_index(self): return -100 @staticmethod def _samplewise_merge_tensors(*l, sep: Tensor | None): if sep is None: cat = torch.cat else: cat = partial(_join, sep=sep) return [*map(cat, zip(*l))] def __init__( self, n_tokens: int = 1024, d_model: int = 512, n_heads: int = 8, n_layers: int = 12, p_dropout: float = 0.1, config = None, ): super().__init__() self.config = config self.activation_checkpointing = self.config.activation_checkpointing if self.config is not None else True self.n_tokens = n_tokens self.d_model = d_model self.n_heads = n_heads self.n_layers = n_layers # +1 to include the stop token n_prom_tokens = n_tokens + (self.n_tasks - 1) # - 1 because tts is an inherent task n_resp_tokens = n_tokens + (1 if self.causal else 0) # AR requires a stop token to... know when to stop self.text_emb = Embedding(n_tokens, d_model) self.proms_emb = MultiEmbedding(self.n_prom_levels, n_prom_tokens, d_model) #, monolithic=self.monolithic) self.resps_emb = MultiEmbedding(self.n_resp_levels, n_resp_tokens, d_model, monolithic=self.monolithic) self.sep = nn.Parameter(torch.randn(d_model)) if self.arch_type == "transformer": self.sin_emb = SinusoidalEmbedding(d_model) self.blocks = nn.ModuleList([TransformerBlock( d_model=d_model, n_heads=n_heads, p_dropout=p_dropout, causal=self.causal, norm_type=self.norm_type, n_levels=self.n_resp_levels, ) for _ in range(n_layers) ]) elif self.arch_type == "retnet": self.retnet = RetNetDecoder(RetNetConfig( vocab_size=n_tokens, decoder_embed_dim=d_model, decoder_retention_heads=n_heads, decoder_ffn_embed_dim=d_model * 4, decoder_layers=n_layers, dropout=p_dropout, checkpoint_activations=self.activation_checkpointing, chunkwise_recurrent=self.causal and self.recurrent_chunk_size > 0, recurrent_chunkwise_size=self.recurrent_chunk_size if self.causal else 0, no_output_layer=True, decoder_normalize_before=True, )) self.classifier = nn.Linear(d_model, n_resp_tokens) self.accuracy_metric = MulticlassAccuracy( n_resp_tokens, top_k=10, average="micro", multidim_average="global", ignore_index=self.ignore_index, ) self.precision_metric = MulticlassPrecision( n_resp_tokens, top_k=10, average="micro", multidim_average="global", ignore_index=self.ignore_index, ) def forward( self, text_list: list[Tensor], proms_list: list[Tensor], resps_list: list[Tensor], targ_list: list[Tensor] | None = None, quant_levels: Tensor | None = None, sampling_temperature: float = 1.0, sampling_top_k: int = -100, sampling_top_p: float = 1.0, sampling_repetition_penalty: float = 1.0, sampling_repetition_penalty_decay: float = 0.0, sampling_length_penalty: float = 0.0, state: dict | None = None, ): x_list = self._samplewise_merge_tensors( self.text_emb(text_list), self.proms_emb(proms_list), self.resps_emb(resps_list, quant_levels), sep=self.sep, ) x, m = list_to_tensor(x_list) batch_size = len(text_list) device = x.device if state is not None: # prefill if len(state) == 0: prefill_size = x.shape[1] # run the initial prompt to fill the KV cache for n in range(prefill_size): xi = x[:, n, :].unsqueeze(1) self.retnet(xi, incremental_state=state, token_embeddings=xi, features_only=True) # grab last token(s) x = x[:, -1, :].unsqueeze(1) if self.arch_type == "transformer": x = self.sin_emb.add_pe(x) l = torch.zeros((batch_size,), dtype=torch.int32) if quant_levels is None else quant_levels l = l.to(device) for block in self.blocks: x = block(x, m, l) elif self.arch_type == "retnet": x, _ = self.retnet(x, incremental_state=state, token_embeddings=x, features_only=True) x = self.classifier(x) * m # Remove padding logits = [ hi[:li] for hi, li in zip(x, map(len, x_list)) ] # compute loss if the target is given if targ_list is not None: ignore_sep = torch.tensor(self.ignore_index, device=device) # create a tensor sequence with one RVQ-bin of the input prompt, but with `ignore_index`, as the prompt is not neeeded for computing the loss against prom_list = [ torch.full_like(t[..., 0], self.ignore_index) for t in proms_list ] # remake input sequence text_prom_list = self._samplewise_merge_tensors( text_list, prom_list, sep=ignore_sep ) # process each batch for i in range(len(text_prom_list)): # for the AR, shift the text/input prompt into the future by 1, and ignore the rolled back text token if quant_levels is None: text_prom_list[i] = text_prom_list[i].roll(-1, dims=0) text_prom_list[i][-1] = self.ignore_index # for the NAR, ignore completely computing the loss against the text prompt else: text_prom_list[i][:] = self.ignore_index # adjust the target sequence if needed for the AR if quant_levels is None: # creates a copy because this is aliased against input response sequence targ_list = [*targ_list] # shift the target response into the future by 1, and mark the rolled back token / last token as a stop token # this prepares the AR to actually generate autoregressive sequences for i in range(len(targ_list)): targ_list[i] = targ_list[i].roll(-1, dims=0) targ_list[i][-1] = self.stop_token # create the new target sequence to compute the loss against target = torch.cat( self._samplewise_merge_tensors( text_prom_list, targ_list, sep=ignore_sep ) ) inputs = torch.cat( logits ) self.loss = dict( # "nll" was in the original implementation and should actually just be called something else nll = F.cross_entropy( inputs, target, ignore_index=self.ignore_index ) ) self.stats = dict( acc = self.accuracy_metric( inputs, target ), precision = self.precision_metric( inputs, target ), ) return logits # (NAR) return the entire generated response if quant_levels is not None: logits = [ logit[-l:] for logit, l in zip(logits, map(len, resps_list)) ] # (AR chunkwise) return the last chunkwise piece elif self.causal and self.recurrent_chunk_size > 0: logits = [ logit[-l:] for logit, l in zip(logits, self.recurrent_chunk_size) ] # (AR) return just the last code else: logits = [ logit[-1:] for logit in logits ] # perform repetition penalizing logits = [ reptition_penalize(logit, previous=resps[:, 0], factor=sampling_repetition_penalty, decay=sampling_repetition_penalty_decay) for logit, resps in zip( logits, resps_list ) ] # (AR) perform length penalizing if quant_levels is None and self.causal: logits = [ length_penalize(logit, length=l + 1, factor=sampling_length_penalty, token=self.stop_token) for logit, l in zip( logits, map(len, resps_list) ) ] # scale our logits by the temp logits = [ logit / sampling_temperature for logit in logits ] # perform top_k/top_p filtering of our logits if sampling_top_k > 0: logits = [ top_k_top_p_filtering(logit, top_k=sampling_top_k, top_p=sampling_top_p) for logit in logits ] # and sample # the original implementation used this instead of argmax; it's probably placebo but it performs better than argmax return [ Categorical(logits=logit).sample() for logit in logits ] def example_usage(): from ..config import cfg cfg.trainer.backend = "local" cfg.trainer.check_for_oom = False from functools import partial from einops import repeat from ..emb.qnt import decode_to_file from ..engines import Engine, Engines from tqdm import tqdm, trange from ..utils import wrapper as ml from .ar import AR from .nar import NAR device = "cuda" x8 = partial(repeat, pattern="t -> t l", l=cfg.models.prom_levels) symmap = {'': 1, '': 2, ' ': 3, '.': 4, ',': 5, '!': 6, '?': 7, 'p': 7, 'iː': 8, 'ɚ': 9, 'ˌ': 10, 'dˌ': 11, 'mˌ': 12, 'd': 13, 'ɹ': 14, 'tˈ': 15, 'pˌ': 16, 'uː': 17, 'l': 18, 'æ': 19, 'ɛ': 20, 'ɪ': 21, 'j': 22, 'ʊ': 23, 't': 24, 'n': 25, 'v': 26, 'a': 27, 'o': 28, 'ŋ': 29, 'w': 30, 'ʌ': 31, 'hˈ': 32, 'ɡˈ': 33, 'ə': 34, 'θˈ': 35, 'dˈ': 36, 'wˌ': 37, 'h': 38, 'z': 39, 'k': 40, 'ð': 41, 'ɡˌ': 42, 'ˈ': 43, 'fˈ': 44, 'i': 45, 's': 46, 'ʃ': 47, 'wˈ': 48, 'ðˈ': 49, 'ɹˈ': 50, 'lˈ': 51, 'ɡ': 52, 'oː': 53, 'mˈ': 54, 'e': 55, 'ɑː': 56, 'nˈ': 57, 'm': 58, 'θˌ': 59, 'sˈ': 60, 'f': 61, 'ɔː': 62, 'hˌ': 63, 'b': 64, 'jˈ': 65, 'ɐ': 66, 'ʒˈ': 67, 'θ': 68, 'bˈ': 69, 'ɾ': 70, 'ɜː': 71, 'ʌˈ': 72, 'ʃˌ': 73, 'bˌ': 74, 'kˈ': 75, 'ɔ': 76, 'zˈ': 77, 'ᵻ': 78, 'kˌ': 79, 'vˈ': 80, 'fˌ': 81, 'ʒ': 82, 'ʃˈ': 83, 'ɹˌ': 84, 'tˌ': 85, 'pˈ': 86, 'ðˌ': 87, 'sˌ': 88, 'nˌ': 89, 'lˌ': 90, '̩': 91, 'ʔ': 92, 'vˌ': 93, 'ɪˈ': 94, '"': 95, 'ɪˌ': 96, 'ʒˌ': 97, 'uːˌ': 98, 'ʊˈ': 99, 'jˌ': 100, 'uːˈ': 101, 'iːˈ': 102, 'zˌ': 103, '.ˈ': 104, '…': 105, 'ŋˌ': 106, 'ɐˌ': 107, '—ˈ': 108, 'iˌ': 109, 'iːˌ': 110, 'ɛː': 111, ')': 112, ')ˈ': 113, '(': 114, 'u': 115, '-': 116, 'ɖˈ': 117, 'iˈ': 118, 'ʰˈ': 119, 'ɟˈ': 120, '̃': 121, 'eː': 122, 'ɾˈ': 123, 'r': 124, 'ʰ': 125, '-ˌ': 126, 'ɫ': 127, 'q': 128, '—': 129, 'ʊˌ': 130, 'aː': 131, 'cˈ': 132, '…ˈ': 133, 'c': 134, 'ɳ': 135, 'ɐˈ': 136, 'x': 137, 'ʔˌ': 138, '.ˌ': 139, 'ɑ': 140, '?ˈ': 141, '̩ˈ': 142, '"ˈ': 143, ',ˈ': 144, 'ŋˈ': 145, 'əˌ': 146, '!ˈ': 147, '"ˌ': 148, '?ˌ': 149, ',ˌ': 150, '—ˌ': 151, '̩ˌ': 152, 'əˈ': 153, '!ˌ': 154, 'ɬ': 155, 'ʲ': 156, '¡': 157, 'ɯ': 158, 'qˌ': 159, 'ʑ': 160, 'ʑˈ': 161, '¿': 162, 'ɑːˈ': 163, 'iːː': 164, 'ɛˈ': 165, '¡ˈ': 166, 'æˈ': 167, 'ç': 168, 'ɾˌ': 169, 'ᵻˈ': 170, 'xˈ': 171, 'ɔːˈ': 172, ';': 173, 'ɬˌ': 174, ':': 175, 'ʔˈ': 176, 'ɑːˌ': 177, 'ɬˈ': 178} def tokenize(content, lang_marker="en"): split = content.split(" ") phones = [f""] + [ " " if not p else p for p in split ] + [f""] return torch.tensor([*map(symmap.get, phones)]).to() kwargs = { 'n_tokens': 1024, 'd_model': 1024, 'n_heads': 16, 'n_layers': 12, } models = { "ar": AR(**kwargs).to(device), "nar": NAR(**kwargs).to(device) } for name, model in models.items(): print(f"{name} parameter count: {sum(p.numel() for p in model.parameters() if p.requires_grad)}") engines = Engines({ name: Engine(model=model, optimizer=ml.AdamW(model.parameters(), lr=1e-4)) for name, model in models.items() }) train = True qnt = torch.load("data/qnt.pt")[0].t()[:, :cfg.models.prom_levels].to(device) text_list = [ tokenize("ˈ a ɪ w ɪ l nˌ ɑː t ˈ æ s k ɐ sˈ ɛ k ə n d tˈ a ɪ m").to(device), #tokenize("ˌ ɔ n ɡˌ o ʊ ɪ ŋ hˈ o ʊ m ð ə tˈ uː f ɹˈ ɛ n d z fˈ a ʊ n d ɐ lˈ ɛ ɾ ɚ f ɹ ʌ m ˈ æ θ o ʊ z , hˌ uː d ɪ zˈ a ɪ ɚ d ðˌ ɛ m t ə mˈ iː t hˌ ɪ m æ t ð ə ɡ ɹˈ æ n d t ʃˈ ɑː ɹ l ɪ mˌ æ ɡ n i ɔ n ð ə fˈ ɑː l o ʊ ɪ ŋ dˈ e ɪ .").to(device), ] proms_list = [ qnt.to(device), ] resps_list = [ qnt.to(device), ] def sample( name, steps=600 ): AR = None NAR = None engines.eval() for name, engine in engines.items(): if name[:2] == "ar": AR = engine elif name[:3] == "nar": NAR = engine resps_list = AR(text_list, proms_list, max_steps=steps, sampling_temperature=1.0) resps_list = [r.unsqueeze(-1) for r in resps_list] codes = NAR( text_list, proms_list, resps_list=resps_list, sampling_temperature=0.2 ) decode_to_file(resps_list[0], f"./data/ar.{name}.wav", device=device) decode_to_file(codes[0], f"./data/ar+nar.{name}.wav", device=device) if train: sample("init", 15) engines.train() t = trange(500) for i in t: stats = {"step": i} """ for name, engine in engines.items(): stats |= engine.traverse(text_list=text_list, proms_list=proms_list, resps_list=resps_list) """ stats = engines.step({"text_list": text_list, "proms_list": proms_list, "resps_list": resps_list}) tqdm.write(f"{stats}") else: for name, engine in engines.items(): engine.module.load_state_dict(torch.load(f"./data/{name}.pth")) sample("final") if __name__ == "__main__": example_usage()