""" Core model for handling all VALL-E tasks. This should handle all the "low" level things such as: * parsing inputs to sequences * converting sequences to embeddings * forward pass * processing loss and returning logits Additional functionality (preparing inputs, generating full audio) should be delegated to classes that inheret the base model """ import math import torch import torch.nn.functional as F import random import numpy as np import re from typing import Literal, overload, Optional, Tuple from functools import partial from einops import rearrange from torch import Tensor, einsum, nn from torch.nn import Embedding from torch.distributions import Categorical from torch.nn.utils.rnn import pad_sequence from torch.utils.checkpoint import checkpoint from torchmetrics.classification import BinaryAccuracy, MulticlassAccuracy, MulticlassPrecision from .arch import * from ..utils import wrapper as ml from ..samplers import reptition_penalize, length_penalize, ban_tokens, top_k_top_p_filtering, dynamic_temperature, top_k_logits_list, mirostat_sample from ..emb.qnt import encode_as_embedding # yuck, kind of needed from ..data import get_task_symmap """ from ..utils.pattern import DelayedPatternProvider, VALLEPattern """ def _create_mask(l, device): """1 is valid region and 0 is invalid.""" seq = torch.arange(max(l), device=device).unsqueeze(0) # (1 t) stop = torch.tensor(l, device=device).unsqueeze(1) # (b 1) return (seq < stop).float() # (b t) def _join(x: tuple[Tensor], sep: Tensor): """ Args: x: (k t d) sep: (d) """ ret = x[0] for i in range(1, len(x)): ret = torch.cat((ret, sep[None], x[i]), dim=0) return ret def list_to_tensor(x_list: list[Tensor], pattern="t b c -> b t c"): """ Args: x_list: [(t d)] Returns: x: (? ? ?) m: (? ? ?), same as x """ l = list(map(len, x_list)) x = rearrange(pad_sequence(x_list), pattern) m = _create_mask(l, x_list[0].device) m = m.t().unsqueeze(-1) # (t b 1) m = rearrange(m, pattern) m = m.to(x) return x, m # automagically parses a batch-list and returns it as a list """ class Embedding(nn.Embedding): def forward(self, x_list: list[Tensor]) -> list[Tensor]: if len(x_list) == 0: return [] return super().forward(torch.cat(x_list)).split([*map(len, x_list)]) """ # Deprecated implementation class MultiEmbedding(nn.Module): def __init__(self, max_n_levels, n_tokens, token_dim, monolithic=False): super().__init__() self.monolithic = monolithic self.max_n_levels = max_n_levels self.n_tokens = n_tokens self.weight = nn.Parameter(torch.randn(max_n_levels, n_tokens, token_dim)) # to-do: select quant level from given quant_levels tensor if given (i.e. through the resp_emb) # I imagine this is an oversight in the NAR. def forward(self, x_list: list[Tensor], quant_level: int | list[int] | Tensor | None = None) -> list[Tensor]: if len(x_list) == 0: return [] # this "strategy" will reserve the weight[0] for te AR and weight[1:] for the NAR # the NAR cannot share RVQ-bin level 0 with the AR for the resp_emb if self.monolithic: w = self.weight[:1] if quant_level is None or quant_level == 0 else self.weight[1:] else: w = self.weight padded_x_list = [] for i, xi in enumerate(x_list): xi = F.one_hot(xi.to(torch.int64), num_classes=self.n_tokens) # t l' k wi = w.shape[0] - xi.shape[1] xi = F.pad(xi, (0, 0, 0, wi)) # t l k padded_x_list.append(xi.to(w)) x = torch.cat(padded_x_list) # n l k x = einsum("l k d, n l k -> n d", w, x) x_list = x.split([*map(len, x_list)]) return x_list # Embedding that sums each RVQ-bin level within a given input acoustic prompt # _Old, to preserve compat with previous models. class AudioEmbedding_Old(nn.Module): def __init__( self, l_tokens: int, # list of number of tokens (needed because AR resps includes stop token) token_dim: int, # dimensionality of the embedding levels: int | None = None, # number of RVQ-bins (I don't remember the specifics) ): super().__init__() # array of embeddings # proms are [0, resp_levels] # resp are split to where [0] is for the AR, and [1:] are reserved for NAR self.embeddings = nn.ModuleList([nn.Embedding(n_tokens, token_dim) for n_tokens in l_tokens]) # weight influencer for the influence for each level (desu this should be really useless because the weights in the embedding themselves should factor this) self.weight = nn.ParameterList([nn.Parameter( torch.Tensor([1]) ) for i in range(levels)]) if levels is not None else None def forward(self, xi: Tensor, quant_level: Tensor | None = None ) -> Tensor: # prom if quant_level is None and xi.shape[-1] > 1: x = sum( [ self.embeddings[k]( xi[:, k] ) * (self.weight[k] if self.weight is not None else 1) for k in range(xi.shape[-1]) ] ) # prom / AR resp elif quant_level is None or quant_level == 0: x = self.embeddings[0]( xi if xi.dim() == 1 else xi[:, 0] ) # NAR resp else: x = sum( [ self.embeddings[k+1]( xi[:, k] ) * (self.weight[k+1] if self.weight is not None else 1) for k in range(xi.shape[-1]) ] ) return x # Embedding that sums each RVQ-bin level within a given input acoustic prompt # Mostly to handle some oversights and errors during testing class AudioEmbedding(nn.Module): def __init__( self, l_tokens: list[int], # list of number of tokens (needed because AR resps includes stop token) token_dim: int, # dimensionality of the embedding sums: bool = True, # whether to sum all previous layers of embeddings to factor in other RVQ bin levels (I do not know which way is better) external_mode: str | None = None, # "exclusive" | "inclusive", whether to include the original audio backend's embeddings ): super().__init__() # array of embeddings # proms are [0, resp_levels] # resp are split to where [0] is for the AR, and [1:] are reserved for NAR # + resps cannot share the AR and NAR embeddings, since they do encode whether to predict the same level but in the next token or predict in place but the next level self.embeddings = nn.ModuleList([nn.Embedding(n_tokens, token_dim) for n_tokens in l_tokens]) # further experimentation is needed to see if this actually is useful self.sums = sums self.external_mode = external_mode # set initial weights to zero if self.external_mode == "inclusive": for i, embedding in enumerate(self.embeddings): embedding.weight = torch.nn.Parameter(torch.zeros( embedding.weight.shape )) def external_embeddings(self, input: Tensor) -> Tensor: quant_level = 0 if input.dim() == 1 else input.shape[-1] - 1 # for AR, trim any stop tokens has_stop_token = False # this block apparently doesn't work """ if quant_level == 0: stop_token = self.embeddings[0].weight.shape[0] - 1 stop_token_indices = (input == stop_token).nonzero() has_stop_token = len(stop_token_indices) > 0 if has_stop_token: input = input[:stop_token_indices.min().item()] """ has_stop_token = False if quant_level == 0: stop_token = self.embeddings[0].weight.shape[0] - 1 has_stop_token = input[-1] == stop_token if has_stop_token: input = input[:-1] # get external embedding embedding = encode_as_embedding( input, quant_level, sums=self.sums ).to(device=input.device, dtype=self.embeddings[quant_level].weight.dtype) # resize if necessary (in case the external embeddings do not match our model dim) embedding = ml.resize_weight( embedding, self.embeddings[quant_level].weight.shape[-1], dim=-1, random=False ) # reintroduce stop token if has_stop_token: stop_token = self.internal_forward( torch.Tensor([stop_token]).to(device=input.device, dtype=torch.int16), 0 ) embedding = torch.concat( [ embedding, stop_token ] ) return embedding def internal_forward(self, xi: Tensor, offset: int = 0 ) -> Tensor: quant_level = 0 if xi.dim() == 1 else xi.shape[-1] - 1 if self.sums and quant_level > 0: x = sum( [ self.embeddings[k + offset]( xi[:, k] ) for k in range( quant_level ) ] ) else: k = quant_level x = self.embeddings[k + offset]( xi if xi.dim() == 1 else xi[:, k] ) return x def forward(self, xi: Tensor, offset: int = 0 ) -> Tensor: x = self.internal_forward( xi, offset ) if self.external_mode != "exclusive" or xi.shape[0] == 0 else None if self.external_mode and xi.shape[0] > 0: external_embeddings = self.external_embeddings( xi ) if self.external_mode == "exclusive": return external_embeddings x += external_embeddings return x # per-level classification class AudioClassifier(nn.Module): def __init__( self, l_tokens: list[int], # list of number of tokens (needed because AR resps includes stop token) token_dim: int, # dimensionality of the embedding ): super().__init__() self.proj = nn.ModuleList([nn.Linear(token_dim, n_tokens) for n_tokens in l_tokens]) def forward(self, xi: Tensor, levels: list[int] ) -> Tensor: dtype = xi.dtype device = xi.device xi = [ self.proj[l]( x ) for x, l in zip(xi, levels) ] # pad if needed xi = [ x if l == 0 else torch.cat( [ x, torch.Tensor( [[ -float("inf") ] for _ in range(x.shape[0])] ).to(dtype=dtype, device=device) ], dim=-1 ) for x, l in zip(xi, levels) ] return torch.stack( xi ) class Metrics(nn.Module): def __init__( self, l_tokens: int | list[int], top_k = 10, average="micro", multidim_average="global", ignore_index = -100 ): super().__init__() self.accuracy = nn.ModuleList([ MulticlassAccuracy( n_tokens, top_k=top_k, average=average, multidim_average=multidim_average, ignore_index=ignore_index, ) for n_tokens in l_tokens ]) self.precision = nn.ModuleList([ MulticlassPrecision( n_tokens, top_k=top_k, average=average, multidim_average=multidim_average, ignore_index=ignore_index, ) for n_tokens in l_tokens ]) def calc_accuracy( self, inputs, targets, quant_levels ): return sum( [ self.accuracy[l]( input[:, :self.accuracy[l].num_classes], target ) for target, input, l in zip( targets, inputs, quant_levels ) ] ) / len( inputs ) def calc_precision( self, inputs, targets, quant_levels ): return sum( [ self.precision[l]( input[:, :self.precision[l].num_classes], target ) for target, input, l in zip( targets, inputs, quant_levels ) ] ) / len( inputs ) def __call__(self, *args, **kwargs): return dict( acc=self.calc_accuracy(*args, **kwargs), ) class Base(nn.Module): # to-do: clean up this property mess @property def causal(self) -> bool: raise NotImplementedError @property def n_resp_levels(self) -> int: raise NotImplementedError @property def n_max_levels(self) -> int: raise NotImplementedError @property def n_langs(self) -> int: raise NotImplementedError @property def n_tasks(self) -> int: raise NotImplementedError @property def n_tones(self) -> int: raise NotImplementedError @property def causal_size(self) -> int: raise NotImplementedError @property def version(self) -> int: return 2 @property def capabilities(self) -> list[str]: raise NotImplementedError @property def stop_token(self): if "len" in self.capabilities: return 0 if not self.causal: raise ValueError("Not using stop token!") return self.n_audio_tokens @property def ignore_index(self): return -100 def loss_factor(self, k): if self.config is None: return 1.0 return self.config.loss_factors[k] if k in self.config.loss_factors else 1.0 # these probably need to live in an interleaved model, as pattern-ing is targeted for a sole AR model """ def codes_to_pattern(self, codes): # expand if not batched if codes.dim() == 2: codes = codes.unsqueeze(0) # [batch, timestep, rvq level] (B, T, K) => [batch, rvq level, timestep] (B, K, T) codes = codes.permute(0, 2, 1) B, K, T = codes.shape # map codes [B, K, T] into pattern sequence [B, K, S] using special_token_id for masked tokens pattern = self.pattern_provider.get_pattern(T) sequence_codes, sequence_indexes, sequence_mask = pattern.build_pattern_sequence( codes.contiguous(), self.stop_token, keep_only_valid_steps=False, ) # (B, K, T) => (B, T, K) return sequence_codes.permute(0, 2, 1) def logits_from_pattern(self, logits, pattern): logits = logits.permute(0, 3, 1, 2) # [B, card, K, S] logits, logits_indexes, logits_mask = pattern.revert_pattern_logits( logits, float('nan'), keep_only_valid_steps=False ) logits = logits.permute(0, 2, 3, 1) # [B, K, T, card] logits_mask = logits_mask[None, :, :].expand(B, -1, -1) # [K, T] -> [B, K, T] return logits, logits_mask """ def __init__( self, n_text_tokens: int = 256, n_audio_tokens: int = 1024, d_model: int = 512, n_heads: int = 8, n_layers: int = 12, p_dropout: float = 0.1, n_experts: int = 1, l_padding: int = 0, training = True, config = None, ): super().__init__() self.training = training self.config = config self.gradient_checkpointing = self.config.gradient_checkpointing if self.config is not None else True self.n_text_tokens = n_text_tokens self.n_audio_tokens = n_audio_tokens self.d_model = d_model self.n_heads = n_heads self.n_layers = n_layers self.n_experts = n_experts self.l_padding = l_padding arch_type = self.config.arch_type if self.config is not None else "llama" self.arch_type = arch_type # check if requested arch is unavailable if self.arch_type in ERROR_ARCHES: raise ERROR_ARCHES[self.arch_type] if "len" not in self.capabilities: # +1 to include the stop token n_resp_tokens = n_audio_tokens + self.causal_size l_tokens = [n_resp_tokens] + [n_resp_tokens - 1] * (self.n_resp_levels - 1) else: n_resp_tokens = n_audio_tokens l_tokens = [n_resp_tokens] * self.n_resp_levels audio_embedding_sums = self.config.experimental.audio_embedding_sums if self.config is not None else False split_classifiers = self.config.experimental.split_classifiers if self.config is not None else False tie_classifier_to_embedding = self.config.experimental.tie_classifier_to_embedding if self.config is not None else False audio_embedding_mode = self.config.experimental.audio_embedding_mode if self.config is not None else "" unified_position_ids = self.config.experimental.unified_position_ids if self.config is not None else True self.unified_position_ids = unified_position_ids self.text_emb = Embedding(n_text_tokens, d_model) self.langs_emb = None self.tones_emb = None self.tasks_emb = None self.rvq_l_emb = None self.len_emb = None # it would be nicer for these to be a token or live inside an embedding self.sep = nn.Parameter(torch.randn(d_model)) self.dropout_token = nn.Parameter(torch.zeros(d_model)) # zeros sounds nicer than randn for a special value if self.version == 1: # legacy n_audio_tokens += (self.n_tasks - 1) # old models have the task tokens in the prom self.proms_emb = MultiEmbedding(self.n_resp_levels, n_audio_tokens, d_model) self.resps_emb = MultiEmbedding(self.n_resp_levels, n_resp_tokens, d_model, monolithic=self.monolithic) elif self.version < 5: # [1024] * 8 self.proms_emb = AudioEmbedding_Old( [n_audio_tokens] * self.n_resp_levels, d_model, levels=self.n_resp_levels if self.version > 3 else None, ) # [1024 + STOP] + [1024] * 8 self.resps_emb = AudioEmbedding_Old( l_tokens, d_model, levels=self.n_resp_levels if self.version > 3 else None, ) else: self.proms_emb = AudioEmbedding( [n_audio_tokens] * self.n_resp_levels, d_model, sums=audio_embedding_sums, external_mode=audio_embedding_mode, ) self.resps_emb = AudioEmbedding( l_tokens, d_model, sums=audio_embedding_sums, external_mode=audio_embedding_mode, ) # useless since I actually removed using these with the input processing overhaul... if self.version >= 3: self.langs_emb = Embedding(self.n_langs, d_model) if self.n_langs > 0 else None self.tasks_emb = Embedding(self.n_tasks, d_model) if self.n_tasks > 0 else None # never actually got added... I kept forgetting to classify all my audio for speaker's tone if self.version >= 4: self.tones_emb = Embedding(self.n_tones, d_model) if self.n_tones > 0 else None # mamba requires this if a model does both AR and NAR tasks # this *might* help for AR and NAR tasks since we explicitly specify the current RVQ level for a sequence, rather than having it "encoded" in the embeddings # this ***might*** let me also unify the proms_emb and resps_embedding if self.version >= 5: self.rvq_l_emb = Embedding(self.n_resp_levels, d_model) # experimental NAR-only mode self.len_emb = Embedding(11, d_model) if "len" in self.capabilities else None # ick, there has to be a better way hf_attention = self.config.attention if self.config is not None else None if self.config.attention == "auto": if "flash" in AVAILABLE_ATTENTIONS: self.config.attention = "flash" elif "xformers" in AVAILABLE_ATTENTIONS: self.config.attention = "xformers" else: self.config.attention = "mem_efficient" if self.config.attention in ["xformers", "mem_efficient", "math", "flash"]: hf_attention = None if self.config.attention not in AVAILABLE_ATTENTIONS: raise ValueError(f"Requesting attention `{self.config.attention}` but is not available. Currently available: {AVAILABLE_ATTENTIONS}") if self.arch_type == "transformer": self.sin_emb = SinusoidalEmbedding(d_model) self.blocks = nn.ModuleList([TransformerBlock( d_model=d_model, n_heads=n_heads, p_dropout=p_dropout if training else 0.0, causal=self.causal, norm_type="ln", # adaln n_levels=self.n_resp_levels, ) for _ in range(n_layers) ]) elif self.arch_type in ["mistral", "mixtral"]: if n_experts <= 1: self.model = MistralModel(MistralConfig( vocab_size=n_resp_tokens, hidden_size=d_model, max_position_embeddings=75 * 60 * 5, # max-length of 60 seconds intermediate_size=d_model*4, num_hidden_layers=n_layers, num_attention_heads=n_heads, attention_dropout=p_dropout if training else 0.0, num_key_value_heads=self.config.experimental.kv_heads if self.config is not None and self.config.experimental.kv_heads > 0 else n_heads, hidden_act="gelu", is_encoder_decoder=False, is_decoder=True, attn_implementation=hf_attention, #gradient_checkpointing=self.gradient_checkpointing, )) else: self.model = MixtralModel(MixtralConfig( vocab_size =n_resp_tokens, hidden_size=d_model, max_position_embeddings=75 * 60 * 5, # max-length of 60 seconds intermediate_size=d_model*4, num_hidden_layers=n_layers, num_attention_heads=n_heads, attention_dropout=p_dropout if training else 0.0, num_key_value_heads=self.config.experimental.kv_heads if self.config is not None and self.config.experimental.kv_heads > 0 else n_heads, sliding_window=75 * 12, # 12 second context window output_router_logits=training, hidden_act="gelu", is_encoder_decoder=False, is_decoder=True, num_local_experts=n_experts, num_experts_per_tok=min(2, n_experts), attn_implementation=hf_attention, #gradient_checkpointing=self.gradient_checkpointing, )) if self.gradient_checkpointing and not self.model.gradient_checkpointing: self.model.gradient_checkpointing_enable(gradient_checkpointing_kwargs=dict( use_reentrant=False )) elif self.arch_type == "llama": if n_experts <= 1: self.model = LlamaModel(LlamaConfig( vocab_size=n_resp_tokens, hidden_size=d_model, max_position_embeddings=75 * 60 * 5, # max-length of 60 seconds intermediate_size=d_model*4, num_hidden_layers=n_layers, num_attention_heads=n_heads, attention_dropout=p_dropout if training else 0.0, num_key_value_heads=n_heads, sliding_window=75 * 12, # 12 second context window hidden_act="gelu", is_encoder_decoder=False, is_decoder=True, attn_implementation=hf_attention, #gradient_checkpointing=self.gradient_checkpointing, )) else: self.model = MixtralModel(MixtralConfig( vocab_size =n_resp_tokens, hidden_size=d_model, max_position_embeddings=75 * 60 * 5, # max-length of 60 seconds intermediate_size=d_model*4, num_hidden_layers=n_layers, num_attention_heads=n_heads, attention_dropout=p_dropout if training else 0.0, num_key_value_heads=n_heads, sliding_window=75 * 12, # 12 second context window output_router_logits=training, hidden_act="gelu", is_encoder_decoder=False, is_decoder=True, num_local_experts=n_experts, num_experts_per_tok=min(2, n_experts), attn_implementation=hf_attention, #gradient_checkpointing=self.gradient_checkpointing, )) if self.gradient_checkpointing and not self.model.gradient_checkpointing: self.model.gradient_checkpointing_enable(gradient_checkpointing_kwargs=dict( use_reentrant=False )) elif self.arch_type == "retnet": kwargs = dict( vocab_size=n_resp_tokens, decoder_embed_dim=d_model, decoder_value_embed_dim =d_model * 2, decoder_retention_heads=n_heads, decoder_ffn_embed_dim=d_model * 4, decoder_layers=n_layers, dropout=p_dropout if training else 0.0, checkpoint_activations=self.gradient_checkpointing, activation_fn="gelu", use_layernorm=self.version < 3, use_biases=self.version < 3, use_glu=self.version >= 3, chunkwise_recurrent=self.causal and self.causal_size > 0, recurrent_chunkwise_size=self.causal_size if self.causal else 0, no_output_layer=True, decoder_normalize_before=True, rotary_embedding_base=10000 ) if n_experts > 1: kwargs.update(dict( use_xmoe=True, moe_freq=1, moe_expert_count=n_experts, moe_gating_use_fp32=False, )) self.model = RetNetDecoder(RetNetConfig(**kwargs)) # do some funny stuff for LoRA training """ if self.gradient_checkpointing: def make_inputs_require_grads(module, input, output): for i, t in enumerate(input): if not isinstance(t, torch.Tensor): continue t.requires_grad_(True) self.model.register_forward_hook(make_inputs_require_grads) """ elif self.arch_type == "retnet-hf": kwargs = dict( vocab_size=n_resp_tokens, decoder_embed_dim=d_model, decoder_value_embed_dim =d_model * 2, decoder_retention_heads=n_heads, decoder_ffn_embed_dim=d_model * 4, decoder_layers=n_layers, dropout=p_dropout if training else 0.0, checkpoint_activations=self.gradient_checkpointing, activation_fn="gelu", use_glu=False, # self.version >= 3, recurrent_chunk_size=self.causal_size if self.causal else 0, decoder_normalize_before=True, deepnorm=False, subln=True, ) self.model = RetNetDecoder_HF(RetNetConfig_HF(**kwargs)) if self.gradient_checkpointing and not self.model.gradient_checkpointing: self.model.gradient_checkpointing_enable(gradient_checkpointing_kwargs=dict( use_reentrant=False )) elif self.arch_type == "bitnet": self.model = BitNetTransformer( num_tokens=n_resp_tokens, dim=d_model, depth=n_layers, heads=n_heads, ff_mult=4, gradient_checkpointing=self.gradient_checkpointing, ) elif self.arch_type in ["mamba","mamba2"]: self.model = MambaMixelModel( vocab_size=n_resp_tokens, d_model=d_model, n_layer=n_layers, d_intermediate=d_model*4, ssm_cfg={"layer": "Mamba2", "use_mem_eff_path": False} if self.arch_type == "mamba2" else {}, rms_norm=True, fused_add_norm=True, residual_in_fp32=False, #attn_layer_idx=attn_layer_idx, #attn_cfg=attn_cfg, #initializer_cfg=initializer_cfg, ) self.model.gradient_checkpointing = self.gradient_checkpointing elif self.arch_type in ["mamba2-hf"]: self.model = Mamba2Model_HF(Mamba2Config_HF( vocab_size=n_resp_tokens, hidden_size=d_model, max_position_embeddings=75 * 60 * 5, # max-length of 60 seconds expand=4, num_hidden_layers=n_layers, is_encoder_decoder=False, is_decoder=True, use_triton_kernels=False, # the entire reason is to NOT use triton (because V100s hate it) residual_in_fp32=False, # breaks for AMP inference )) if self.gradient_checkpointing and not self.model.gradient_checkpointing: self.model.gradient_checkpointing_enable(gradient_checkpointing_kwargs=dict( use_reentrant=False )) elif self.arch_type == "mmfreelm": self.model = HGRNBitModel(HGRNBitConfig( vocab_size=n_resp_tokens, hidden_size=d_model, max_position_embeddings=75 * 60 * 5, # max-length of 60 seconds intermediate_size=d_model*4, num_hidden_layers=n_layers, num_heads=n_heads, #hidden_act="gelu", #is_encoder_decoder=False, #is_decoder=True, attn_mode=hf_attention, #gradient_checkpointing=self.gradient_checkpointing, )) if self.gradient_checkpointing and not self.model.gradient_checkpointing: self.model.gradient_checkpointing_enable(gradient_checkpointing_kwargs=dict( use_reentrant=False )) else: raise RuntimeError(f'Unknown arch specified: {self.arch_type}') if hasattr( self.model, "embeddings" ): del self.model.embeddings if self.config.attention in ["xformers", "auto", "mem_efficient", "math", "flash"]: self.model = ml.replace_attention( self.model, klass=LlamaAttention, target=LlamaAttention_Base, mode=self.config.attention ) if not split_classifiers: self.classifier = nn.Linear(d_model, n_resp_tokens) self.classifiers = None self.accuracy_metric = MulticlassAccuracy( n_resp_tokens, top_k=10, average="micro", multidim_average="global", ignore_index=self.ignore_index, ) self.precision_metric = MulticlassPrecision( n_resp_tokens, top_k=10, average="micro", multidim_average="global", ignore_index=self.ignore_index, ) self.metrics = None else: self.classifier = None self.classifiers = AudioClassifier( l_tokens, d_model ) self.accuracy_metric = None self.precision_metric = None self.metrics = Metrics( l_tokens ) """ if tie_classifier_to_embedding: for i, proj in enumerate( self.classifiers.proj ): self.classifiers.proj[i].weight = self.resps_emb.embeddings[i].weight """ def _forward( self, inputs, mask = None, position_ids = None, state = None, ): x = inputs m = mask.squeeze(-1).int() aux_loss = None # HF transformer derived model if self.arch_type in ["llama", "mistral", "mixtral"]: kwargs = dict( attention_mask=m, inputs_embeds=x, past_key_values=state, position_ids=position_ids, use_cache=True, # return_dict=True, ) if self.n_experts > 1 and self.training: kwargs["output_router_logits"] = True t = self.model(**kwargs) x = t[0] if state is not None: state = t[1] if self.n_experts > 1 and self.training: router_logits = t[-1] aux_loss = self.model.config.router_aux_loss_coef * load_balancing_loss_func( router_logits, self.model.config.num_local_experts, self.model.config.num_experts_per_tok ) elif self.arch_type == "transformer": # ensures we specify a quant_level for the transformer implementation's AdaLN l = torch.zeros((batch_size,), dtype=torch.int32) if quant_levels is None else quant_levels l = l.to(device) # inject position information x = self.sin_emb.add_pe(x) # pass our inputs through the transformer for block in self.blocks: x = block(x, m, l) elif self.arch_type == "retnet": # pass our inputs through the RetNet x, _ = self.model(x, incremental_state=state, token_embeddings=x, features_only=True) if _ is not None and "l_aux" in _ and self.n_experts > 1: aux_loss = torch.sum(torch.stack([ t for t in _["l_aux"] if t is not None])) * 0.001 elif self.arch_type == "retnet-hf": first = state is None or len(state) == 0 kwargs = dict( attention_mask=m, inputs_embeds=x if first else x[:, -1, :].unsqueeze(1), past_key_values=None if first else state, use_cache=True, forward_impl='parallel' if first else 'recurrent', return_dict=True, ) out = self.model(**kwargs) x = out.last_hidden_state if state is not None: state = out.past_key_values elif self.arch_type in ["mamba","mamba2"]: x = self.model( hidden_states=x ) elif self.arch_type == "mamba2-hf": first = state is None or len(state) == 0 kwargs = dict( inputs_embeds=x, cache_params=state, return_dict=True, ) out = self.model(**kwargs) x = out.last_hidden_state if state is not None: state = out.cache_params elif self.arch_type == "bitnet": x = self.model(x) elif self.arch_type == "mmfreelm": x = self.model( attention_mask=m, inputs_embeds=x, ) x = x[0] # output projection layer with masking if self.classifier is not None: x = self.classifier(x) * mask return x, state, aux_loss # takes a bunch of separate lists and parses them into an ordered array of tuples to guide input sequence creation def inputs( self, text_list: list[Tensor], proms_list: list[Tensor], resps_list: list[Tensor], lang_list: list[Tensor] | None = None, tone_list: list[Tensor] | None = None, len_list: list[Tensor] | None = None, task_list: list[str] | None = None, quant_levels: int | list[int] | Tensor | None = None ): device = text_list[0].device batch_size = len(text_list) inputs = [ [] for _ in range(batch_size) ] for i in range(batch_size): quant_level = quant_levels[i] if quant_levels is not None else 0 task_type = task_list[i] if task_list is not None else "tts" # insert task type as a string inputs[i].append( ( "task", task_type ) ) # to-do: maybe not split the below blocks up # might be beneficial in the event I need to use a difference sequence, such as STT tasks # Base-line TTS task # Sequence: # prom /may/ include tokens inside to help guide things, per SpeechX if f'<{task_type}>' in get_task_symmap(): # insert the text prompt if text_list is not None and text_list[i] is not None: inputs[i].append( ( "text", text_list[i] ) ) # insert lang token if we're trained for it if "lang" in self.capabilities and lang_list is not None and lang_list[i] is not None: inputs[i].append( ( "lang", lang_list[i] ) ) # insert RVQ level guidance token if the model is versioned for it if self.rvq_l_emb is not None: inputs[i].append( ( "quant_level", torch.Tensor([ quant_level ]).to(device=device, dtype=torch.int16) ) ) # insert input audio prompt if proms_list is not None and proms_list[i] is not None: inputs[i].append( ( "prom", proms_list[i] ) ) # insert tone token if we're trained for it if "tone" in self.capabilities and tone_list is not None and tone_list[i] is not None: inputs[i].append( ( "tone", tone_list[i] ) ) # insert the current output response if resps_list is not None and resps_list[i] is not None: inputs[i].append( ( "resp", resps_list[i] ) ) # Audio length prediction task # Sequence: elif task_type == "len": # throw an error so we don't silently train without this if self.len_emb is None: raise Exception(f"Requesting task `{task_type}` but corresponding embedding is not defined.") # insert the text prompt if text_list is not None and text_list[i] is not None: inputs[i].append( ( "text", text_list[i] ) ) # insert lang token if we're trained for it if "lang" in self.capabilities and lang_list is not None and lang_list[i] is not None: inputs[i].append( ( "lang", lang_list[i] ) ) # technically will always be level 0 but for the sake of keeing the input formatting coherent... if self.rvq_l_emb is not None: # override to 0 (I don't know if this change propagates, I'm not familiar with when python passes by (copied) value or reference) quant_levels[i] = 0 inputs[i].append( ( "quant_level", torch.Tensor([ 0 ]).to(device=device, dtype=torch.int16) ) ) # insert input audio prompt if proms_list is not None and proms_list[i] is not None: inputs[i].append( ( "prom", proms_list[i] ) ) # insert tone token if we're trained for it if "tone" in self.capabilities and tone_list is not None and tone_list[i] is not None: inputs[i].append( ( "tone", tone_list[i] ) ) # insert output length tokens (if it exists) if len_list is not None and len_list[i] is not None: inputs[i].append( ( "len", len_list[i] ) ) # "encode" length to tokens for 0-9 + stop elif resps_list is not None and resps_list[i] is not None: # yes this could be encoded better inputs[i].append( ( "len", torch.Tensor([ 0 ] + [ int(i) for i in str( resps_list[i].shape[0]) ] + [ 10 ]).to(device=device, dtype=torch.int16) ) ) else: raise Exception(f'Unrecognized task: {task_type}') return inputs def inputs_to_embeddings( self, inputs: list, quant_levels: int | list[int] | Tensor | None = None ): # handles tasks where the prompt has task tokens injected in the middle def prompt_input_to_embedding( input, quant_level ): if isinstance(input, str): return self.tasks_emb( torch.Tensor( [ get_task_symmap()[f'<{input}>'] ] ).to(device=device, dtype=torch.int16) ) # get RVQ level 0, or up to targetted RVQ level inference if self.version <= 4: return self.proms_emb( input if quant_level == 0 else input[:, :quant_level] ) return self.proms_emb( input if input.dim() == 1 else input[:, : 1 if quant_level == 0 else quant_level], offset = 0 ) # yuck token_dropout_rate = self.config.experimental.token_dropout_rate if self.config else 0.0 token_dropout_rvq_levels = self.config.experimental.token_dropout_rvq_levels if self.config else None if self.dropout_token is None or not self.training: token_dropout_rate = 0.0 if not token_dropout_rvq_levels: token_dropout_rvq_levels = [1, self.resp_levels] x_list = [] for batch_index, batch_input in enumerate(inputs): batch = [] quant_level = quant_levels[batch_index] if quant_levels is not None else 0 task_type = "tts" for name, input in batch_input: # technically can provide a map for input_name => embedding, but some embedding requires additional processing embedding = None # is already an embedding if name == "task": # noop # *maybe* inject a token for specifying task type task_type = input continue elif name == "text": embedding = self.text_emb( input ) device = embedding.device elif name == "quant_level" and self.rvq_l_emb is not None: embedding = self.rvq_l_emb( input ) elif name == "lang" and self.langs_emb is not None: embedding = self.langs_emb( input ) elif name == "prom": proms = [ input ] if isinstance(input, torch.Tensor) else input embedding = torch.cat( [ prompt_input_to_embedding( input, quant_level ) for input in proms if input is not None ] ) elif name == "tone" and self.tones_emb is not None: embedding = self.tones_emb( input ) elif name == "resp": if "len" in self.capabilities and quant_level == 0: # fill with "stop" tokens for NAR-only model embedding = self.resps_emb( torch.full_like(input if input.dim() == 1 else input[..., 0], self.stop_token), offset = 0 ) else: # get RVQ level 0, or up to targetted RVQ level inference if self.version <= 4: embedding = self.resps_emb( input if quant_level == 0 else input[:, :quant_level], quant_level ) else: embedding = self.resps_emb( input if input.dim() == 1 or quant_level == 0 else input[:, :quant_level], offset = 0 if quant_level == 0 or "len" in self.capabilities else 1 ) # apply token dropout if token_dropout_rate > 0.0 and (token_dropout_rvq_levels[0] <= quant_level and quant_level <= token_dropout_rvq_levels[1]): steps = embedding.shape[0] - (1 if quant_level == 0 else 0) # do not mess with stop token for i in range( steps ): if random.random() > token_dropout_rate: continue embedding[i] = self.dropout_token elif name == "len" and self.len_emb is not None: embedding = self.len_emb( input ) else: # should probably raise an exception so things aren't processed silently continue batch.append(embedding) x_list.append( _join( batch, self.sep ) ) return x_list # creates position ids from a given input list # if not unified_position_ids, then each input segment will have its own sequence def inputs_to_position_ids( self, inputs: list, mask: Tensor, ): # shamelessly grabbed from modeling_llama.py ids = mask.long().cumsum(-1) - 1 ids.masked_fill_( mask == 0, 1 ) # there's a better way if not self.unified_position_ids: x_list = [] def get_input_token_length( name, input ): # task token if isinstance(input, str): return 1 # list of tokens if not isinstance(input, torch.Tensor): return sum( [ i.shape[0] for i in input if isinstance(i, torch.Tensor) ] ) + 1 return input.shape[0] + (0 if name == "resp" else 1) for batch_index, batch_input in enumerate(inputs): batch = torch.cat( [ torch.Tensor([*range(get_input_token_length(name, input))]) for name, input in batch_input if name != "task" ] ) delta = ids[batch_index].shape[0] - batch.shape[0] if delta > 0: batch = torch.cat( [ batch, torch.Tensor([1] * delta) ] ) x_list.append( batch ) ids = torch.stack( x_list ) return ids.to(device=mask.device, dtype=torch.int32) def calc_loss( self, inputs: list, logits, quant_levels: int | list[int] | Tensor | None = None, ): device = logits[0].device # handles tasks where the prompt has task tokens injected in the middle def prompt_input_to_token( input, quant_level ): if isinstance(input, str): return torch.Tensor( [ get_task_symmap()[f'<{input}>'] ] ).to(dtype=torch.int16, device=device) # ignore prom, fill with mock tokens, because the prom embeddings don't directly map to tokens if self.version < 4 or (self.version >= 5 and self.config and self.config.experimental.audio_embedding_sums): return torch.full_like(input[..., 0], self.ignore_index) return input if input.dim() == 1 else input[:, quant_level] # old, "naive" way, no loss factoring if not self.config.loss_factors: target_list = [] task_list = [] for batch_index, batch in enumerate(inputs): quant_level = quant_levels[batch_index] target = [] for name, input in batch: if name == "task": task_list.append( input ) elif name == "prom": proms = [ input ] if isinstance(input, torch.Tensor) else input target.append( torch.cat( [ prompt_input_to_token( input, quant_level ) for input in proms if input is not None ] ) ) elif name == "resp": target.append( input if input.dim() == 1 else input[:, quant_level] ) elif name in ["text", "quant_level", "lang", "tone", "len"]: target.append( input ) target_list.append( _join( target, torch.tensor(self.ignore_index, device=target[-1].device) ) ) batch_size = len(target_list) # modify only for the AR so it can properly behave like a transformer for i in range(batch_size): if "len" in self.capabilities: if task_list[i] != "len": continue else: if quant_levels is not None and quant_levels[i] > 0: continue l = self.causal_size logits[i] = logits[i][..., :-l, :] # shift the target so that token n... target_list[i] = target_list[i][..., l:] # predicts token n + 1 # see comments for the split-loss calc cross_entropy call if False: target = torch.cat( target_list ) inputs = torch.cat( logits ) self.loss = dict( # "nll" was in the original implementation and should actually just be called something else nll = F.cross_entropy( inputs, target, ignore_index=self.ignore_index ) ) self.stats = self.metrics( inputs, targets, quant_levels ) if self.metrics is not None else dict( acc = self.accuracy_metric( inputs, target ), # precision = self.precision_metric( inputs, target ), ) else: self.loss = dict( nll = sum([ F.cross_entropy( inputs, targets, ignore_index=self.ignore_index ) for targets, inputs in zip( target_list, logits ) ]) / batch_size ) self.stats = self.metrics( logits, target_list, quant_levels ) if self.metrics is not None else dict( acc = sum( [ self.accuracy_metric( inputs, targets ) for targets, inputs in zip( target_list, logits ) ] ) / batch_size ) return """ # considerations: # * split losses does not maintain the entire sequence # * the first token is ignored for all pieces, rather than just the first text token (which is always provided) # + the other way at least should keep it intact this way # + extra logic might be required to instead offset from the end for the resp, rather than fit snuggly # + this might just be a spook since the odds the very first token of the AR mattering is slim (although I swear I hear a very brief audio pop sometimes) """ self.loss = dict() self.stats = dict(acc = dict()) info = {} batch_size = len( inputs ) for i, batch in enumerate( inputs ): quant_level = quant_levels[i] it = 0 for name, input in batch: # do not use resp if name == "resp": input = input if input.dim() == 1 else input[:, quant_level] # select prom level elif name == "prom": proms = [ input ] if isinstance(input, torch.Tensor) else input input = torch.cat( [ prompt_input_to_token( input, quant_level ) for input in proms ] ) # meta-input, no corresponding token at the moment elif name == "task": continue seq_len = input.shape[0] logit = logits[i][it:it+seq_len] it += seq_len + 1 # +1 to incorporate the separator # for the AR, shift sequence so that it predicts the next token # (the NAR predicts the next token in place, so it's not necessary to do any modifications for it) if quant_level == 0 and seq_len > 1: l = self.causal_size logit = logit[..., :-l, :] input = input[..., l:] # shift sequence to the right by one (or causal chunk size) if name not in info: info[name] = { "targets": [], "logits": [], } # modeling_llama.py has some comment about requiring .contiguous() but I feel it's a spook since that incurs a memory allocation info[name]["targets"].append( input.long() ) info[name]["logits"].append( logit ) for name, batch in info.items(): loss_factor = self.loss_factor(name) if name not in ["text", "prom", "resp", "len"]: continue if loss_factor == 0.0: continue # "faster" if cross_entropy has speedups for processing an entire batch, but torch.cat allocates new tensors # to-do: set this to a var if False: targets = torch.cat( batch["targets"] ).long() inputs = torch.cat( batch["logits"] ) self.loss[name] = F.cross_entropy( inputs, targets, ignore_index=self.ignore_index ) * loss_factor self.stats["acc"][name] = self.accuracy_metric( inputs, targets ) # probably consumes less memory due to not having to allocate memory # this method also opens the way to scale loss per RVQ level (although it shouldn't really be needed) else: self.loss[name] = sum([ F.cross_entropy( inputs, targets, ignore_index=self.ignore_index ) * loss_factor for targets, inputs in zip( batch["targets"], batch["logits"] ) ]) / batch_size if self.metrics is not None: metrics = self.metrics( batch["logits"], batch["targets"], quant_levels ) self.stats["acc"][name] = metrics["acc"] else: self.stats["acc"][name] = sum( [ self.accuracy_metric( inputs, targets ) for targets, inputs in zip( batch["targets"], batch["logits"] ) ] ) / batch_size def forward( self, inputs: list, quant_levels: int | list[int] | Tensor | None = None, state: dict | list | None = None, ): x_list = self.inputs_to_embeddings( inputs, quant_levels ) x, m = list_to_tensor(x_list) training = self.training # yes, there's a better way. """ training = False for batch_index, batch in enumerate(inputs): for name, input in batch: if name == "targ": training = True """ device = x.device batch_size = len(x_list) # pure AR if quant_levels is None: quant_levels = [ 0 for _ in range(batch_size) ] # pad our input and mask, but retain the original length by doing it after if self.l_padding and x.shape[1] % self.l_padding != 0: # pad input shape = list(x.shape) shape[1] = self.l_padding - shape[1] % self.l_padding padding = torch.zeros(shape, dtype=x.dtype, device=x.device) x = torch.cat([x, padding], dim=1) # pad mask shape[2] = 1 padding = torch.zeros(shape, dtype=x.dtype, device=x.device) m = torch.cat([m, padding], dim=1) # needs to be done here as we still have our raw inputs position_ids = self.inputs_to_position_ids( inputs, mask=m.squeeze(-1).int() ) if not self.unified_position_ids else None x, state, aux_loss = self._forward( inputs=x, mask=m, state=state, position_ids=position_ids, ) if self.classifiers is not None: x = self.classifiers(x, levels = quant_levels) * m # Remove padding logits = [ hi[:li] for hi, li in zip(x, map(len, x_list)) ] # compute loss if the target is given if training: self.calc_loss( inputs=inputs, logits=logits, quant_levels=quant_levels ) # include any additional losses (for example: MoE router) if aux_loss is not None: self.loss["aux_loss"] = aux_loss return (logits, state) if state is not None else logits def sample( self, logits: list[Tensor], resps_list: list[Tensor], quant_levels: int | list[int] | Tensor | None = None, temperature: float = 1.0, min_temperature: float = -1.0, top_k: int = -100, top_p: float = 1.0, repetition_penalty: float = 1.0, repetition_penalty_decay: float = 0.0, length_penalty: float = 0.0, beam_width: int = 0, mirostat: list[dict] | None = None, ): if min_temperature < 0: min_temperature = temperature # (NAR) return the entire generated response # Parallel decoding relies on the last N tokens in the logits, because each token predicts the next RVQ layer in the same place (forgetfully obviously) if quant_levels is not None: logits = [ logit[-l:] for logit, l in zip(logits, map(len, resps_list)) ] # (AR chunkwise) return the last chunkwise piece elif self.causal: logits = [ logit[-self.causal_size:] for logit in logits ] devices = [ logit.device for logit in logits ] logits = [ logit.to(device="cpu", dtype=logit.dtype if logit.dtype != torch.float16 else torch.float32) for logit in logits ] # perform repetition penalizing if "len" not in self.capabilities: logits = [ reptition_penalize(logit, previous=resps[:, -1], factor=repetition_penalty, decay=repetition_penalty_decay) for logit, resps in zip( logits, resps_list ) ] # argmax instead if temperature <= 0.0: return [ logit.argmax(dim=1) for logit in logits ] # (AR) perform length penalizing if quant_levels is None and self.causal: logits = [ length_penalize(logit, length=l + 1, factor=length_penalty, token=self.stop_token) for logit, l in zip( logits, map(len, resps_list) ) ] # (NAR) disable stop token elif "ar" in self.capabilities: logits = [ ban_tokens(logit, tokens=[self.stop_token]) for logit, l in zip( logits, map(len, resps_list) ) ] # perform top_k/top_p filtering of our logits if top_k > 0 or top_p < 1.0: logits = [ top_k_top_p_filtering(logit, top_k=top_k, top_p=top_p) for logit in logits ] # trigger dynamic temperature sampling if the minimum temperature is not the same as the sampling temperature # epsilon float comparison because I don't trust Python if abs(temperature - min_temperature) >= 0.001: logits = [ dynamic_temperature(logit, temperature=temperature, min_temperature=min_temperature) for logit in logits ] else: logits = [ logit / temperature for logit in logits ] # do mirostat sampling # currently incompatible with beam searching with the way the two are implemented, perhaps a night of brain bashing can make the two work if mirostat is not None: # mirostat sampling return [ mirostat_sample(logit, state=state) for logit, state in zip(logits, mirostat) ] # do beam search (naive implementation) # picks the top-k across all batches, and re-batches those resultant tokens # returns the logit scores as well to be P-concatted with the previous scores # to-do: not naively implement beam searching if beam_width > 1: candidates = top_k_logits_list( logits, beam_width ) res = [ torch.tensor(token, dtype=torch.int16).unsqueeze(dim=-1) for batch, token in candidates ] scores = [ logits[batch].flatten()[token] for batch, token in candidates ] return res, scores # and sample return [ Categorical(logits=logit).sample() for logit in logits ]