dataset: training: [ ] validation: [ ] speaker_name_getter: "lambda p: f'{p.parts[-3]}_{p.parts[-2]}'" use_hdf5: True validate: True workers: 8 cache: True phones_range: [4, 128] duration_range: [1.0, 12.0] random_utterance: 1.0 max_prompts: 3 prompt_duration: 3.0 models: _models: - name: "ar" size: "full" resp_levels: 1 arch_type: "retnet" - name: "nar" size: "full" resp_levels: 1 arch_type: "retnet" prom_levels: 2 hyperparameters: batch_size: 8 gradient_accumulation_steps: 16 gradient_clipping: 100 optimizer: Adamw learning_rate: 1.0e-4 scheduler_type: "" #scheduler_type: OneCycle #scheduler_params: # cycle_first_step_size: 10_000 # cycle_first_stair_count: 10_000 # cycle_second_step_size: 15_000 # cycle_second_stair_count: 15_000 # decay_step_size: 5_000 # cycle_min_lr: 2.5e-4 # 1.0e-5 # cycle_max_lr: 2.5e-4 # 1.0e-4 # decay_lr_rate: 0.0 # cycle_min_mom: 0.90 # cycle_max_mom: 0.99 # decay_mom_rate: 0.0 evaluation: batch_size: 32 frequency: 250 size: 32 steps: 300 ar_temperature: 1.0 nar_temperature: 0.2 trainer: iterations: 100_000 save_tag: step save_on_oom: True save_on_quit: True save_frequency: 100 aggressive_optimizations: False #load_tag: "9500" #load_state_dict: True #load_states: False #strict_loading: False #restart_step_count: True gc_mode: None # "global_step" weight_dtype: bfloat16 # float16, float32 backend: deepspeed deepspeed: zero_optimization_level: 2 use_compression_training: True inference: use_vocos: True bitsandbytes: enabled: false