import argparse import torch import torch.nn from .data import get_phone_symmap from .engines import load_engines from .config import cfg from .models.lora import lora_get_state_dict from .utils.io import torch_save, torch_load, json_read, json_write, Path # stitches embeddings into one embedding & classifier => lm_head, for use in a HF compatible weight # *will* require retraining because the classifier is in one contiguous space, and proms are NOT summed @torch.no_grad() def convert_to_hf( state_dict, config = None, save_path = None ): n_text_tokens, model_dim = state_dict['module']['text_emb.weight'].shape n_audio_tokens = state_dict['module']['proms_emb.embeddings.0.weight'].shape[0] n_resp_levels = state_dict['module']['rvq_l_emb.weight'].shape[0] n_len_tokens = 11 n_lang_tokens = state_dict['module']['langs_emb.weight'].shape[0] n_task_tokens = state_dict['module']['tasks_emb.weight'].shape[0] # the new tokenizer to use tokenizer = {} tokenizer_vocab = {} tokenizer_path = cfg.rel_path / cfg.tokenizer_path if not tokenizer_path.exists(): tokenizer_path = Path("./data/") / cfg.tokenizer_path if tokenizer_path.exists(): tokenizer = json_read( tokenizer_path ) else: tokenizer = { "model": { "vocab": get_phone_symmap() } } l_tokens = [ n_text_tokens, # text n_audio_tokens * n_resp_levels, # prom (n_audio_tokens + 1) * 2, # resp: AR + NAR-len (with stop/mask) (n_audio_tokens) * (n_resp_levels - 1), # NAR n_resp_levels, # RVQ level n_len_tokens, # len tokens 1, # separator n_lang_tokens, # langs n_task_tokens, # tasks ] n_tokens = sum(l_tokens) lang_map = [ "en", "ja", "de", "fr", "zh", "ko", ] task_map = [ "tts", "tts-c", "ns", "sr", "tse", "soe", "mask", "eoe", "stt", ] embedding = torch.nn.Embedding( n_tokens, model_dim ) classifier = torch.nn.Linear( model_dim, n_tokens ) #embedding.weight.requires_grad = False #classifier.weight.requires_grad = False #classifier.bias.requires_grad = False # inject text tokens token_start = 0 token_end = l_tokens[0] embedding.weight[token_start:token_end] = state_dict['module']['text_emb.weight'] classifier.weight[token_start:token_end] = state_dict['module']['classifiers.proj.9.weight'] classifier.bias[token_start:token_end] = state_dict['module']['classifiers.proj.9.bias'] # tokenizer already has these tokens # inject prom tokens token_start = token_end token_end += l_tokens[1] for l in range(n_resp_levels): start = token_start + (l * n_audio_tokens) end = start + n_audio_tokens embedding.weight[start:end] = state_dict['module'][f'proms_emb.embeddings.{l}.weight'] # there's no corresponding classifier #classifier.weight[start:end] = state_dict['module'][f'classifiers.proj.{l}.weight'] #classifier.bias[start:end] = state_dict['module'][f'classifiers.proj.{l}.bias'] for t in range(n_audio_tokens): tokenizer_vocab[f'<|P|{l}:{t}|>'] = start + t # inject AR token_start = token_end token_end += l_tokens[2] // 2 embedding.weight[token_start:token_end] = state_dict['module'][f'resps_emb.embeddings.0.weight'] classifier.weight[token_start:token_end] = state_dict['module']['classifiers.proj.0.weight'] classifier.bias[token_start:token_end] = state_dict['module']['classifiers.proj.0.bias'] for t in range(n_audio_tokens): tokenizer_vocab[f'<|AR|0:0|{t}|>'] = token_start + t tokenizer_vocab[f''] = token_start + 1024 # inject NAR-len token_start = token_end token_end += l_tokens[2] // 2 embedding.weight[token_start:token_end] = state_dict['module'][f'resps_emb.embeddings.8.weight'] classifier.weight[token_start:token_end-1] = state_dict['module']['classifiers.proj.8.weight'] classifier.bias[token_start:token_end-1] = state_dict['module']['classifiers.proj.8.bias'] for t in range(n_audio_tokens): tokenizer_vocab[f''] = token_start + t tokenizer_vocab[f''] = token_start + 1024 # inject NAR token_start = token_end token_end += l_tokens[3] for l in range(1, n_resp_levels): start = token_start + ((l-1) * n_audio_tokens) end = start + n_audio_tokens embedding.weight[start:end] = state_dict['module'][f'resps_emb.embeddings.{l}.weight'] classifier.weight[start:end] = state_dict['module'][f'classifiers.proj.{l}.weight'] classifier.bias[start:end] = state_dict['module'][f'classifiers.proj.{l}.bias'] for t in range(n_audio_tokens): tokenizer_vocab[f'<|NAR|{l-1}:{l}|{t}|>'] = start + t # inject RVQ level token_start = token_end token_end += l_tokens[4] embedding.weight[token_start:token_end] = state_dict['module'][f'rvq_l_emb.weight'] # there is no corresponding classifier for l in range(n_resp_levels): tokenizer_vocab[f'<|RVQ:{l}|>'] = token_start + l # inject len token_start = token_end token_end += l_tokens[5] embedding.weight[token_start:token_end] = state_dict['module'][f'len_emb.weight'] classifier.weight[token_start:token_end] = state_dict['module']['classifiers.proj.10.weight'][0:n_len_tokens] # erroneously sized as 256 classifier.bias[token_start:token_end] = state_dict['module']['classifiers.proj.10.bias'][0:n_len_tokens] # erroneously sized as 256 for t in range(n_len_tokens): tokenizer_vocab[f'<|len:{t}|>'] = token_start + t # inject sep token_start = token_end token_end += l_tokens[6] embedding.weight[token_start:token_end] = state_dict['module']['sep'] tokenizer_vocab['<|sep|>'] = token_start # there is no corresponding classifier # inject langs token_start = token_end token_end += l_tokens[7] embedding.weight[token_start:token_end] = state_dict['module']['langs_emb.weight'] for l in range(n_lang_tokens): lang = lang_map[l] tokenizer_vocab[f'<|lang:{lang}|>'] = token_start + l # there is no corresponding classifier # inject tasks token_start = token_end token_end += l_tokens[8] embedding.weight[token_start:token_end] = state_dict['module']['tasks_emb.weight'] for l in range(n_task_tokens): task = task_map[l] tokenizer_vocab[f'<|task:{task}|>'] = token_start + l # there is no corresponding classifier model_dict = {} # filter out the underlying model weights and extract them for k in state_dict['module'].keys(): if not k.startswith('model.'): continue model_dict[k] = state_dict['module'][k].clone() embedding_dict = embedding.state_dict() classifier_dict = classifier.state_dict() model_dict['model.embed_tokens.weight'] = embedding_dict['weight'] model_dict['lm_head.weight'] = classifier_dict['weight'] model_dict['lm_head.bias'] = classifier_dict['bias'] # write files in an HF compatible way out_dir = cfg.rel_path / "hf" out_dir.mkdir(parents=True, exist_ok=True) # write weights torch_save( model_dict, out_dir / "model.safetensors" ) # write vocab.json tokenizer['model']['vocab'] |= tokenizer_vocab json_write(tokenizer, out_dir / "tokenizer.json", pretty=True) # write config.json json_write({ "architectures": [ "LlamaForCausalLM" ], "attention_bias": False, "attention_dropout": 0.0, "bos_token_id": 1, "eos_token_id": 2, "hidden_act": "gelu", "hidden_size": model_dim, "initializer_range": 0.02, "intermediate_size": model_dim * 4, "max_position_embeddings": 75 * 60 * 5, "model_type": "llama", "num_attention_heads": 16, "num_hidden_layers": 12, "num_key_value_heads": 16, "pretraining_tp": 1, "rms_norm_eps": 1e-06, "rope_scaling": None, "rope_theta": 10000.0, "tie_word_embeddings": False, "torch_dtype": "bfloat16", "transformers_version": "4.40.0", "use_cache": False, "vocab_size": n_tokens }, out_dir / "config.json", pretty=True ) return state_dict # yanks a LoRA from the training checkpoint def extract_lora( state_dict, config = None, save_path = None, dtype = None ): if dtype is None: dtype = cfg.inference.dtype format = save_path.suffix[1:] lora = state_dict["lora"] if "lora" in state_dict else None # should always be included, but just in case if lora is None and "module" in state_dict: lora, module = lora_get_state_dict( state_dict["module"], split = True ) state_dict["module"] = module if "lora" in state_dict: state_dict["lora"] = None # should raise an exception since there's nothing to extract, or at least a warning if not lora: return state_dict # save lora specifically # should probably export other attributes, similar to what SD LoRAs do save_path = save_path.parent / f"lora.{format}" torch_save( { "module": lora, "config": cfg.lora.__dict__ if cfg.lora is not None else None, }, save_path ) return state_dict # copies a single classifier head into multiple classifier heads per RVQ level def split_classifier_heads( state_dict, config = cfg.model, save_path = None, dtype = None): levels = config.max_levels if "classifier.weight" not in state_dict['module']: return state_dict # copy to new AudioClassifier for i in range(levels): tokens = 1025 if i == 0 else 1024 # trim per RVQ level (since level 0 has a stop token) state_dict['module'][f'classifiers.proj.{i}.weight'] = state_dict['module']['classifier.weight'][:tokens, :].clone() state_dict['module'][f'classifiers.proj.{i}.bias'] = state_dict['module']['classifier.bias'][:tokens].clone() # delete old weights del state_dict['module']['classifier.weight'] del state_dict['module']['classifier.bias'] return state_dict # converts a normal LLaMA model to a MoE model, as best as I can def moe_ify( state_dict, config = cfg.model, save_path = None, dtype = None ): # to-do: find a good way to pass in requested experts experts = 8 for layer in range( config.layers ): #state_dict[f'model.layers.{layer}.block_sparse_moe.gate.weight'] = torch.randn((config.dim, experts)) for expert in range( experts ): state_dict['module'][f'model.layers.{layer}.block_sparse_moe.experts.{expert}.w1.weight'] = state_dict['module'][f'model.layers.{layer}.mlp.up_proj.weight'].clone() state_dict['module'][f'model.layers.{layer}.block_sparse_moe.experts.{expert}.w2.weight'] = state_dict['module'][f'model.layers.{layer}.mlp.down_proj.weight'].clone() state_dict['module'][f'model.layers.{layer}.block_sparse_moe.experts.{expert}.w3.weight'] = state_dict['module'][f'model.layers.{layer}.mlp.gate_proj.weight'].clone() del state_dict['module'][f'model.layers.{layer}.mlp.up_proj.weight'] del state_dict['module'][f'model.layers.{layer}.mlp.down_proj.weight'] del state_dict['module'][f'model.layers.{layer}.mlp.gate_proj.weight'] return state_dict def main(): parser = argparse.ArgumentParser("Save trained model to path.") parser.add_argument("--module-only", action='store_true') parser.add_argument("--hf", action='store_true', default=None) # convert to HF-style parser.add_argument("--export-lora", action='store_true', default=None) # exports LoRA parser.add_argument("--split-classifiers", action='store_true', default=None) # splits classifier heads parser.add_argument("--moe-ify", action='store_true', default=None) # splits classifier heads parser.add_argument("--experts", type=int, default=8) # set target dtype to export to parser.add_argument("--dtype", type=str, default="auto") # set target dtype to export to parser.add_argument("--format", type=str, default=cfg.weights_format) # set target format to export weights under args, unknown = parser.parse_known_args() if args.format.lower() not in ["sft", "safetensors", "pt", "pth"]: raise Exception(f"Unknown requested format: {args.format}") if args.module_only: cfg.trainer.load_module_only = True if args.hf and args.export_lora: raise Exception("Requesting more than one callback") if args.dtype != "auto": cfg.trainer.weight_dtype = args.dtype # necessary to ensure we are actually exporting the weights right cfg.inference.backend = cfg.trainer.backend engines = load_engines(training=False) # to ignore loading optimizer state callback = None if args.hf: callback = convert_to_hf elif args.export_lora: callback = extract_lora elif args.split_classifiers: callback = split_classifier_heads elif args.moe_ify: callback = moe_ify # set it here after the model loads to not influence which model loads cfg.model.experts = args.experts for name, engine in engines.items(): engine.module.config.experts = args.experts engine.hyper_config.experts = args.experts engines.export(userdata={"symmap": get_phone_symmap()}, callback=callback, format=args.format) if __name__ == "__main__": main()