from ..config import cfg import argparse import random import torch import torchaudio from functools import cache from pathlib import Path from encodec import EncodecModel from encodec.utils import convert_audio from einops import rearrange from torch import Tensor from tqdm import tqdm USE_VOCOS = False try: from vocos import Vocos USE_VOCOS = True except Exception as e: USE_VOCOS = False @cache def _load_encodec_model(device="cuda"): # Instantiate a pretrained EnCodec model assert cfg.sample_rate == 24_000 # too lazy to un-if ladder this shit if cfg.models.levels == 2: bandwidth_id = 1.5 elif cfg.models.levels == 4: bandwidth_id = 3.0 elif cfg.models.levels == 8: bandwidth_id = 6.0 model = EncodecModel.encodec_model_24khz() model.set_target_bandwidth(bandwidth_id) model.to(device) return model @cache def _load_vocos_model(device="cuda"): assert cfg.sample_rate == 24_000 model = Vocos.from_pretrained("charactr/vocos-encodec-24khz") model = model.to(device) # too lazy to un-if ladder this shit if cfg.models.levels == 2: bandwidth_id = 0 elif cfg.models.levels == 4: bandwidth_id = 1 elif cfg.models.levels == 8: bandwidth_id = 2 model.bandwidth_id = torch.tensor([bandwidth_id], device=device) model.sample_rate = cfg.sample_rate return model @cache def _load_model(device="cuda", vocos=USE_VOCOS): if vocos: model = _load_vocos_model(device) else: model = _load_encodec_model(device) return model def unload_model(): _load_model.cache_clear() _load_encodec_model.cache_clear() @torch.inference_mode() def decode(codes: Tensor, device="cuda"): """ Args: codes: (b q t) """ # expand if we're given a raw 1-RVQ stream if codes.dim() == 1: codes = rearrange(codes, "t -> 1 1 t") # expand to a batch size of one if not passed as a batch # vocos does not do batch decoding, but encodec does, but we don't end up using this anyways *I guess* # to-do, make this logical elif codes.dim() == 2: codes = rearrange(codes, "t q -> 1 q t") assert codes.dim() == 3, f'Requires shape (b q t) but got {codes.shape}' model = _load_model(device) # upcast so it won't whine if codes.dtype == torch.int8 or codes.dtype == torch.int16 or codes.dtype == torch.uint8: codes = codes.to(torch.int32) kwargs = {} if USE_VOCOS: x = model.codes_to_features(codes[0]) kwargs['bandwidth_id'] = model.bandwidth_id else: x = [(codes.to(device), None)] wav = model.decode(x, **kwargs) if not USE_VOCOS: wav = wav[0] return wav, model.sample_rate # huh def decode_to_wave(resps: Tensor, device="cuda"): return decode(resps, device=device) def decode_to_file(resps: Tensor, path: Path, device="cuda"): wavs, sr = decode(resps, device=device) torchaudio.save(str(path), wavs.cpu(), sr) return wavs, sr def _replace_file_extension(path, suffix): return (path.parent / path.name.split(".")[0]).with_suffix(suffix) @torch.inference_mode() def encode(wav: Tensor, sr: int, device="cuda"): """ Args: wav: (t) sr: int """ model = _load_encodec_model(device) wav = wav.unsqueeze(0) wav = convert_audio(wav, sr, model.sample_rate, model.channels) wav = wav.to(device) encoded_frames = model.encode(wav) qnt = torch.cat([encoded[0] for encoded in encoded_frames], dim=-1) # (b q t) # duration = qnt.shape[-1] / 75 return qnt def encode_from_files(paths, device="cuda"): tuples = [ torchaudio.load(str(path)) for path in paths ] wavs = [] main_sr = tuples[0][1] for wav, sr in tuples: assert sr == main_sr, "Mismatching sample rates" if wav.shape[0] == 2: wav = wav[:1] wavs.append(wav) wav = torch.cat(wavs, dim=-1) return encode(wav, sr, "cpu") def encode_from_file(path, device="cuda"): if isinstance( path, list ): return encode_from_files( path, device ) else: wav, sr = torchaudio.load(str(path), format=path[-3:]) if wav.shape[0] == 2: wav = wav[:1] qnt = encode(wav, sr, device) return qnt def main(): parser = argparse.ArgumentParser() parser.add_argument("folder", type=Path) parser.add_argument("--suffix", default=".wav") args = parser.parse_args() paths = [*args.folder.rglob(f"*{args.suffix}")] for path in tqdm(paths): out_path = _replace_file_extension(path, ".qnt.pt") if out_path.exists(): continue qnt = encode_from_file(path) torch.save(qnt.cpu(), out_path) if __name__ == "__main__": main()