import os import json import torch import numpy as np from tqdm.auto import tqdm from pathlib import Path from vall_e.config import cfg # things that could be args cfg.sample_rate = 24_000 cfg.inference.audio_backend = "encodec" """ cfg.inference.weight_dtype = "bfloat16" cfg.inference.dtype = torch.bfloat16 cfg.inference.amp = True """ from vall_e.emb.g2p import encode as valle_phonemize from vall_e.emb.qnt import encode_from_file as valle_quantize, _replace_file_extension audio_extension = ".dac" if cfg.inference.audio_backend == "dac" else ".enc" input_dataset = "LibriTTS_R" output_dataset = f"LibriTTS-Train-{'2' if cfg.sample_rate == 24_000 else '4'}4KHz" device = "cuda" txts = [] wavs = [] for dataset_name in os.listdir(f'./{input_dataset}/'): if not os.path.isdir(f'./{input_dataset}/{dataset_name}/'): continue for speaker_id in tqdm(os.listdir(f'./{input_dataset}/{dataset_name}/'), desc="Processing speaker"): if not os.path.isdir(f'./{input_dataset}/{dataset_name}/{speaker_id}'): continue os.makedirs(f'./{output_dataset}/{speaker_id}/', exist_ok=True) for book_id in os.listdir(f'./{input_dataset}/{dataset_name}/{speaker_id}'): if not os.path.isdir(f'./{input_dataset}/{dataset_name}/{speaker_id}/{book_id}'): continue for filename in os.listdir(f'./{input_dataset}/{dataset_name}/{speaker_id}/{book_id}'): # os.rename(f'./{input_dataset}/{dataset_name}/{speaker_id}/{book_id}/{filename}', f'./{output_dataset}/{speaker_id}/{filename}') inpath = Path(f'./{input_dataset}/{dataset_name}/{speaker_id}/{book_id}/{filename}') outpath = Path(f'./{output_dataset}/{speaker_id}/{filename}') if ".wav" in filename: # and not _replace_file_extension(outpath, ".dac").exists(): txts.append(( inpath, outpath )) for paths in tqdm(txts, desc="Processing..."): inpath, outpath = paths try: if _replace_file_extension(outpath, ".dac").exists() and _replace_file_extension(outpath, ".json").exists(): data = json.loads(open(_replace_file_extension(outpath, ".json"), 'r', encoding='utf-8').read()) qnt = np.load(_replace_file_extension(outpath, audio_extension), allow_pickle=True) if not isinstance(data["phonemes"], str): data["phonemes"] = "".join(data["phonemes"]) for k, v in data.items(): qnt[()]['metadata'][k] = v np.save(open(_replace_file_extension(outpath, audio_extension), "wb"), qnt) else: text = open(_replace_file_extension(inpath, ".original.txt"), "r", encoding="utf-8").read() phones = valle_phonemize(text) qnt = valle_quantize(_replace_file_extension(inpath, ".wav"), device=device) if cfg.inference.audio_backend == "dac": np.save(open(_replace_file_extension(outpath, audio_extension), "wb"), { "codes": qnt.codes.cpu().numpy().astype(np.uint16), "metadata": { "original_length": qnt.original_length, "sample_rate": qnt.sample_rate, "input_db": qnt.input_db.cpu().numpy().astype(np.float32), "chunk_length": qnt.chunk_length, "channels": qnt.channels, "padding": qnt.padding, "dac_version": "1.0.0", "text": text.strip(), "phonemes": "".join(phones), "language": "en", }, }) else: np.save(open(_replace_file_extension(outpath, audio_extension), "wb"), { "codes": qnt.cpu().numpy().astype(np.uint16), "metadata": { "original_length": qnt.shape[0] / 75.0, "sample_rate": cfg.sample_rate, "text": text.strip(), "phonemes": "".join(phones), "language": "en", }, }) except Exception as e: tqdm.write(f"Failed to process: {paths}: {e}")